Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2018, Volume 58, Number 6, Pages 914–933
DOI: https://doi.org/10.7868/S0044466918060066
(Mi zvmmf10704)
 

This article is cited in 9 scientific papers (total in 9 papers)

Examples of parametrization of the Cauchy problem for systems of ordinary differential equations with limiting singular points

E. B. Kuznetsov, S. S. Leonov

Moscow Aviation Institute, Moscow, Russia
Citations (9)
References:
Abstract: The paper presents an application of the method, developed by the authors, in which the solution is continued with respect to a modified best argument, measured along the integral curve in a nearly tangent direction, and the properties of the argument are close to the best. The problems of irreversible deformation, connected with the calculation of the creep and long-term strength of metal structures, are chosen for the test. The creep process is modeled by initial problems for systems of ordinary differential equations with several limiting singular points. Two problems of uniaxial stretching of samples from steel 45 and titanium alloy 3V are considered. The solutions of these problems by explicit methods using a modified argument for the continuation of the solution are compared with the results of application of the best parametrization and implicit Runge–Kutta methods, as well as with analytical solutions.
Key words: solution continuation with respect to a parameter, best parametrization, limiting singular point, system of ordinary differential equations, initial problem, creep, fracture, damage parameter.
Funding agency Grant number
Russian Science Foundation 18-19-00474
Received: 15.05.2017
Revised: 24.07.2017
English version:
Computational Mathematics and Mathematical Physics, 2018, Volume 58, Issue 6, Pages 881–897
DOI: https://doi.org/10.1134/S0965542518060076
Bibliographic databases:
Document Type: Article
UDC: 519.622
Language: Russian
Citation: E. B. Kuznetsov, S. S. Leonov, “Examples of parametrization of the Cauchy problem for systems of ordinary differential equations with limiting singular points”, Zh. Vychisl. Mat. Mat. Fiz., 58:6 (2018), 914–933; Comput. Math. Math. Phys., 58:6 (2018), 881–897
Citation in format AMSBIB
\Bibitem{KuzLeo18}
\by E.~B.~Kuznetsov, S.~S.~Leonov
\paper Examples of parametrization of the Cauchy problem for systems of ordinary differential equations with limiting singular points
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2018
\vol 58
\issue 6
\pages 914--933
\mathnet{http://mi.mathnet.ru/zvmmf10704}
\crossref{https://doi.org/10.7868/S0044466918060066}
\elib{https://elibrary.ru/item.asp?id=35096877}
\transl
\jour Comput. Math. Math. Phys.
\yr 2018
\vol 58
\issue 6
\pages 881--897
\crossref{https://doi.org/10.1134/S0965542518060076}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000438129700006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85049687334}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10704
  • https://www.mathnet.ru/eng/zvmmf/v58/i6/p914
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:293
    References:40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024