Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2018, Volume 58, Number 6, Pages 895–913
DOI: https://doi.org/10.7868/S0044466918060054
(Mi zvmmf10703)
 

This article is cited in 2 scientific papers (total in 2 papers)

Testing of adaptive symplectic conservative numerical methods for solving the Kepler problem

G. G. Elenin, T. G. Elenina

Moscow State University, Moscow, Russia
Citations (2)
References:
Abstract: The properties of a family of new adaptive symplectic conservative numerical methods for solving the Kepler problem are examined. It is shown that the methods preserve all first integrals of the problem and the orbit of motion to high accuracy in real arithmetic. The time dependences of the phase variables have the second, fourth, or sixth order of accuracy. The order depends on the chosen values of the free parameters of the family. The step size in the methods is calculated automatically depending on the properties of the solution. The methods are effective as applied to the computation of elongated orbits with an eccentricity close to unity.
Key words: Hamiltonian systems, symplecticity, invertibility, integrals of motion, Runge–Kutta methods, Kepler problem.
Received: 25.04.2017
English version:
Computational Mathematics and Mathematical Physics, 2018, Volume 58, Issue 6, Pages 863–880
DOI: https://doi.org/10.1134/S0965542518060052
Bibliographic databases:
Document Type: Article
UDC: 519.62
Language: Russian
Citation: G. G. Elenin, T. G. Elenina, “Testing of adaptive symplectic conservative numerical methods for solving the Kepler problem”, Zh. Vychisl. Mat. Mat. Fiz., 58:6 (2018), 895–913; Comput. Math. Math. Phys., 58:6 (2018), 863–880
Citation in format AMSBIB
\Bibitem{YelEle18}
\by G.~G.~Elenin, T.~G.~Elenina
\paper Testing of adaptive symplectic conservative numerical methods for solving the Kepler problem
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2018
\vol 58
\issue 6
\pages 895--913
\mathnet{http://mi.mathnet.ru/zvmmf10703}
\crossref{https://doi.org/10.7868/S0044466918060054}
\elib{https://elibrary.ru/item.asp?id=35096876}
\transl
\jour Comput. Math. Math. Phys.
\yr 2018
\vol 58
\issue 6
\pages 863--880
\crossref{https://doi.org/10.1134/S0965542518060052}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000438129700005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85049696980}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10703
  • https://www.mathnet.ru/eng/zvmmf/v58/i6/p895
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:256
    References:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024