Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2018, Volume 58, Number 3, Pages 383–396
DOI: https://doi.org/10.7868/S0044466918030067
(Mi zvmmf10690)
 

This article is cited in 3 scientific papers (total in 3 papers)

A generalization of the Karush–Kuhn–Tucker theorem for approximate solutions of mathematical programming problems based on quadratic approximation

V. V. Voloshinov

Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
Citations (3)
References:
Abstract: In computations related to mathematical programming problems, one often has to consider approximate, rather than exact, solutions satisfying the constraints of the problem and the optimality criterion with a certain error. For determining stopping rules for iterative procedures, in the stability analysis of solutions with respect to errors in the initial data, etc., a justified characteristic of such solutions that is independent of the numerical method used to obtain them is needed. A necessary $\delta$-optimality condition in the smooth mathematical programming problem that generalizes the Karush–Kuhn–Tucker theorem for the case of approximate solutions is obtained. The Lagrange multipliers corresponding to the approximate solution are determined by solving an approximating quadratic programming problem.
Key words: approximate solutions, mathematical programming, Karush–Kuhn–Tucker theorem, quadratic programming.
Funding agency Grant number
Russian Science Foundation 16-11-10352
Received: 20.03.2017
Revised: 20.04.2017
English version:
Computational Mathematics and Mathematical Physics, 2018, Volume 58, Issue 3, Pages 364–377
DOI: https://doi.org/10.1134/S0965542518030132
Bibliographic databases:
Document Type: Article
UDC: 519.626
Language: Russian
Citation: V. V. Voloshinov, “A generalization of the Karush–Kuhn–Tucker theorem for approximate solutions of mathematical programming problems based on quadratic approximation”, Zh. Vychisl. Mat. Mat. Fiz., 58:3 (2018), 383–396; Comput. Math. Math. Phys., 58:3 (2018), 364–377
Citation in format AMSBIB
\Bibitem{Vol18}
\by V.~V.~Voloshinov
\paper A generalization of the Karush--Kuhn--Tucker theorem for approximate solutions of mathematical programming problems based on quadratic approximation
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2018
\vol 58
\issue 3
\pages 383--396
\mathnet{http://mi.mathnet.ru/zvmmf10690}
\crossref{https://doi.org/10.7868/S0044466918030067}
\elib{https://elibrary.ru/item.asp?id=32615742}
\transl
\jour Comput. Math. Math. Phys.
\yr 2018
\vol 58
\issue 3
\pages 364--377
\crossref{https://doi.org/10.1134/S0965542518030132}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000430012700006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85045408651}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10690
  • https://www.mathnet.ru/eng/zvmmf/v58/i3/p383
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:249
    References:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024