Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2018, Volume 58, Number 3, Pages 346–364
DOI: https://doi.org/10.7868/S0044466918030043
(Mi zvmmf10688)
 

This article is cited in 5 scientific papers (total in 5 papers)

On complicated expansions of solutions to ODES

A. D. Bruno

Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Moscow, Russia
Citations (5)
References:
Abstract: Polynomial ordinary differential equations are studied by asymptotic methods. The truncated equation associated with a vertex or a nonhorizontal edge of their polygon of the initial equation is assumed to have a solution containing the logarithm of the independent variable. It is shown that, under very weak constraints, this nonpower asymptotic form of solutions to the original equation can be extended to an asymptotic expansion of these solutions. This is an expansion in powers of the independent variable with coefficients being Laurent series in decreasing powers of the logarithm. Such expansions are sometimes called psi-series. Algorithms for such computations are described. Six examples are given. Four of them are concern with Painlevé equations. An unexpected property of these expansions is revealed.
Key words: ordinary differential equation, asymptotic expansion, solution with logarithms, Painlevé equation.
Received: 29.12.2016
Revised: 25.07.2017
English version:
Computational Mathematics and Mathematical Physics, 2018, Volume 58, Issue 3, Pages 328–347
DOI: https://doi.org/10.1134/S0965542518030041
Bibliographic databases:
Document Type: Article
UDC: 519.62
Language: Russian
Citation: A. D. Bruno, “On complicated expansions of solutions to ODES”, Zh. Vychisl. Mat. Mat. Fiz., 58:3 (2018), 346–364; Comput. Math. Math. Phys., 58:3 (2018), 328–347
Citation in format AMSBIB
\Bibitem{Bru18}
\by A.~D.~Bruno
\paper On complicated expansions of solutions to ODES
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2018
\vol 58
\issue 3
\pages 346--364
\mathnet{http://mi.mathnet.ru/zvmmf10688}
\crossref{https://doi.org/10.7868/S0044466918030043}
\elib{https://elibrary.ru/item.asp?id=32615740}
\transl
\jour Comput. Math. Math. Phys.
\yr 2018
\vol 58
\issue 3
\pages 328--347
\crossref{https://doi.org/10.1134/S0965542518030041}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000430012700004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85045377295}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10688
  • https://www.mathnet.ru/eng/zvmmf/v58/i3/p346
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:237
    References:63
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024