Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2018, Volume 58, Number 2, Pages 181–191
DOI: https://doi.org/10.7868/S0044466918020035
(Mi zvmmf10671)
 

This article is cited in 4 scientific papers (total in 4 papers)

Inverse problems in economic measurements

A. A. Shananinabcd

a Peoples Friendship University, Moscow, Russia
b Moscow Institute of Physics and Technology, Dolgoprudnyi, Moscow oblast, Russia
c Faculty of Computational Mathematics and Cybernetics, Moscow State University, Moscow, Russia
d Dorodnicyn Computing Center, Federal Research Center “Computer Science and Control”, Russian Academy of Sciences, Moscow, Russia
Citations (4)
References:
Abstract: The problem of economic measurements is discussed. The system of economic indices must reflect the economic relations and mechanisms existing in society. An achievement of the XX century is the development of a system of national accounts and the gross domestic product index. However, the gross domestic product index, which is related to the Hamilton–Pontryagin function in extensive economic growth models, turns out to be inadequate under the conditions of structural changes. New problems of integral geometry related to production models that take into account the substitution of production factors are considered.
Key words: gross domestic product, economic growth model, Hamilton–Pontryagin function, Houthakker-Johansen model, integral geometry, Bernstein's theorems.
Funding agency Grant number
Russian Science Foundation 16-11-10246
Received: 12.09.2017
English version:
Computational Mathematics and Mathematical Physics, 2018, Volume 58, Issue 2, Pages 170–179
DOI: https://doi.org/10.1134/S0965542518020161
Bibliographic databases:
Document Type: Article
UDC: 519.698
Language: Russian
Citation: A. A. Shananin, “Inverse problems in economic measurements”, Zh. Vychisl. Mat. Mat. Fiz., 58:2 (2018), 181–191; Comput. Math. Math. Phys., 58:2 (2018), 170–179
Citation in format AMSBIB
\Bibitem{Sha18}
\by A.~A.~Shananin
\paper Inverse problems in economic measurements
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2018
\vol 58
\issue 2
\pages 181--191
\mathnet{http://mi.mathnet.ru/zvmmf10671}
\crossref{https://doi.org/10.7868/S0044466918020035}
\elib{https://elibrary.ru/item.asp?id=32659380}
\transl
\jour Comput. Math. Math. Phys.
\yr 2018
\vol 58
\issue 2
\pages 170--179
\crossref{https://doi.org/10.1134/S0965542518020161}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000427612600004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85044239968}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10671
  • https://www.mathnet.ru/eng/zvmmf/v58/i2/p181
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:289
    References:81
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024