Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2018, Volume 58, Number 1, Pages 95–107
DOI: https://doi.org/10.7868/S0044466918010064
(Mi zvmmf10662)
 

This article is cited in 1 scientific paper (total in 1 paper)

Invariant manifolds for the burgers equation defined on a semiaxis

A. V. Gorshkov

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
Citations (1)
References:
Abstract: Stable nonlocal invariant manifolds for the Burgers equation defined on $R_+$ are constructed. One problem of a boundary control stabilizing the solution of this equation to zero is also studied. Results of numerical experiments are presented.
Key words: Burgers equation, invariant manifolds, stabilization, boundary control.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-03576_а
13-01-12476
Received: 19.09.2016
English version:
Computational Mathematics and Mathematical Physics, 2018, Volume 58, Issue 1, Pages 90–101
DOI: https://doi.org/10.1134/S0965542518010062
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: A. V. Gorshkov, “Invariant manifolds for the burgers equation defined on a semiaxis”, Zh. Vychisl. Mat. Mat. Fiz., 58:1 (2018), 95–107; Comput. Math. Math. Phys., 58:1 (2018), 90–101
Citation in format AMSBIB
\Bibitem{Gor18}
\by A.~V.~Gorshkov
\paper Invariant manifolds for the burgers equation defined on a semiaxis
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2018
\vol 58
\issue 1
\pages 95--107
\mathnet{http://mi.mathnet.ru/zvmmf10662}
\crossref{https://doi.org/10.7868/S0044466918010064}
\elib{https://elibrary.ru/item.asp?id=32282718}
\transl
\jour Comput. Math. Math. Phys.
\yr 2018
\vol 58
\issue 1
\pages 90--101
\crossref{https://doi.org/10.1134/S0965542518010062}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000426674100006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85042711970}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10662
  • https://www.mathnet.ru/eng/zvmmf/v58/i1/p95
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:208
    References:46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024