Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2017, Volume 57, Number 12, Pages 2079–2097
DOI: https://doi.org/10.7868/S0044466917120122
(Mi zvmmf10655)
 

This article is cited in 6 scientific papers (total in 6 papers)

A parallel implementation of the algebraic multigrid method for solving problems in dynamics of viscous incompressible fluid

K. N. Volkova, A. S. Kozelkovb, S. V. Lashkinb, N. V. Tarasovab, A. V. Yalozob

a St. Petersburg Baltic Technical University, St. Petersburg, Russia
b Russian Federal Nuclear Center—All-Russia Institute of Experimental Physics, Sarov, Nizhegorodskaya oblast, Russia
References:
Abstract: An algorithm for improving the scalability of the multigrid method used for solving the system of difference equations obtained by the finite volume discretization of the Navier–Stokes equations on unstructured grids with an arbitrary cell topology is proposed. It is based on the cascade assembly of the global level; the cascade procedure gradually decreases the number of processors involved in the computations. Specific features of the proposed approach are described, and the results of solving benchmark problems in the dynamics of viscous incompressible fluid are discussed; the scalability and efficiency of the proposed method are estimated. The advantages of using the global level in the parallel implementation of the multigrid method which sometimes makes it possible to speed up the computations by several fold.
Key words: computational fluid dynamics, multigrid method, unstructured grid, parallelization, speeding up computations.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00267_а
Received: 18.02.2016
Revised: 13.04.2017
English version:
Computational Mathematics and Mathematical Physics, 2017, Volume 57, Issue 12, Pages 2030–2046
DOI: https://doi.org/10.1134/S0965542517120119
Bibliographic databases:
Document Type: Article
UDC: 519.634
Language: Russian
Citation: K. N. Volkov, A. S. Kozelkov, S. V. Lashkin, N. V. Tarasova, A. V. Yalozo, “A parallel implementation of the algebraic multigrid method for solving problems in dynamics of viscous incompressible fluid”, Zh. Vychisl. Mat. Mat. Fiz., 57:12 (2017), 2079–2097; Comput. Math. Math. Phys., 57:12 (2017), 2030–2046
Citation in format AMSBIB
\Bibitem{VolKozLas17}
\by K.~N.~Volkov, A.~S.~Kozelkov, S.~V.~Lashkin, N.~V.~Tarasova, A.~V.~Yalozo
\paper A parallel implementation of the algebraic multigrid method for solving problems in dynamics of viscous incompressible fluid
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2017
\vol 57
\issue 12
\pages 2079--2097
\mathnet{http://mi.mathnet.ru/zvmmf10655}
\crossref{https://doi.org/10.7868/S0044466917120122}
\elib{https://elibrary.ru/item.asp?id=30646086}
\transl
\jour Comput. Math. Math. Phys.
\yr 2017
\vol 57
\issue 12
\pages 2030--2046
\crossref{https://doi.org/10.1134/S0965542517120119}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000425932800010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85042469362}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10655
  • https://www.mathnet.ru/eng/zvmmf/v57/i12/p2079
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:220
    Full-text PDF :89
    References:51
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024