Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2017, Volume 57, Number 11, Pages 1771–1781
DOI: https://doi.org/10.7868/S0044466917110035
(Mi zvmmf10633)
 

This article is cited in 10 scientific papers (total in 10 papers)

Regularization of the double period method for experimental data processing

A. A. Belovab, N. N. Kalitkina

a Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Moscow, Russia
b Faculty of Physics, Moscow State University, Moscow, Russia
References:
Abstract: In physical and technical applications, an important task is to process experimental curves measured with large errors. Such problems are solved by applying regularization methods, in which success depends on the mathematician’s intuition. We propose an approximation based on the double period method developed for smooth nonperiodic functions. Tikhonov’s stabilizer with a squared second derivative is used for regularization. As a result, the spurious oscillations are suppressed and the shape of an experimental curve is accurately represented. This approach offers a universal strategy for solving a broad class of problems. The method is illustrated by approximating cross sections of nuclear reactions important for controlled thermonuclear fusion. Tables recommended as reference data are obtained. These results are used to calculate the reaction rates, which are approximated in a way convenient for gasdynamic codes. These approximations are superior to previously known formulas in the covered temperature range and accuracy.
Key words: experimental data processing, rates of nuclear reactions, double period method, regularization.
Funding agency Grant number
Russian Science Foundation 16-11-10001
Received: 08.07.2016
English version:
Computational Mathematics and Mathematical Physics, 2017, Volume 57, Issue 11, Pages 1741–1750
DOI: https://doi.org/10.1134/S0965542517110033
Bibliographic databases:
Document Type: Article
UDC: 519.657
Language: Russian
Citation: A. A. Belov, N. N. Kalitkin, “Regularization of the double period method for experimental data processing”, Zh. Vychisl. Mat. Mat. Fiz., 57:11 (2017), 1771–1781; Comput. Math. Math. Phys., 57:11 (2017), 1741–1750
Citation in format AMSBIB
\Bibitem{BelKal17}
\by A.~A.~Belov, N.~N.~Kalitkin
\paper Regularization of the double period method for experimental data processing
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2017
\vol 57
\issue 11
\pages 1771--1781
\mathnet{http://mi.mathnet.ru/zvmmf10633}
\crossref{https://doi.org/10.7868/S0044466917110035}
\elib{https://elibrary.ru/item.asp?id=30480179}
\transl
\jour Comput. Math. Math. Phys.
\yr 2017
\vol 57
\issue 11
\pages 1741--1750
\crossref{https://doi.org/10.1134/S0965542517110033}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000416327600002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85037026698}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10633
  • https://www.mathnet.ru/eng/zvmmf/v57/i11/p1771
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:297
    Full-text PDF :50
    References:59
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024