Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2017, Volume 57, Number 10, Pages 1581–1599
DOI: https://doi.org/10.7868/S0044466917100039
(Mi zvmmf10620)
 

On some estimates for best approximations of bivariate functions by Fourier–Jacobi sums in the mean

M. V. Abilova, M. K. Kerimovb, E. V. Selimkhanova

a Daghestan State University, Makhachkala, Russia
b Dorodnicyn Computing Center, Federal Research Center “Computer Science and Control”, Russian Academy of Sciences, Moscow, Russia
References:
Abstract: Some problems in computational mathematics and mathematical physics lead to Fourier series expansions of functions (solutions) in terms of special functions, i.e., to approximate representations of functions (solutions) by partial sums of corresponding expansions. However, the errors of these approximations are rarely estimated or minimized in certain classes of functions. In this paper, the convergence rate (of best approximations) of a Fourier series in terms of Jacobi polynomials is estimated in classes of bivariate functions characterized by a generalized modulus of continuity. An approximation method based on “spherical” partial sums of series is substantiated, and the introduction of a corresponding class of functions is justified. A two-sided estimate of the Kolmogorov $N$-width for bivariate functions is given.
Key words: functions in two variables, Fourier–Jacobi sums, generalized modulus of continuity, estimates of best approximations, Kolmogorov $N$-width.
Received: 27.02.2017
English version:
Computational Mathematics and Mathematical Physics, 2017, Volume 57, Issue 10, Pages 1559–1576
DOI: https://doi.org/10.1134/S0965542517100037
Bibliographic databases:
Document Type: Article
UDC: 519.651
Language: Russian
Citation: M. V. Abilov, M. K. Kerimov, E. V. Selimkhanov, “On some estimates for best approximations of bivariate functions by Fourier–Jacobi sums in the mean”, Zh. Vychisl. Mat. Mat. Fiz., 57:10 (2017), 1581–1599; Comput. Math. Math. Phys., 57:10 (2017), 1559–1576
Citation in format AMSBIB
\Bibitem{AbiKerSel17}
\by M.~V.~Abilov, M.~K.~Kerimov, E.~V.~Selimkhanov
\paper On some estimates for best approximations of bivariate functions by Fourier--Jacobi sums in the mean
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2017
\vol 57
\issue 10
\pages 1581--1599
\mathnet{http://mi.mathnet.ru/zvmmf10620}
\crossref{https://doi.org/10.7868/S0044466917100039}
\elib{https://elibrary.ru/item.asp?id=30046353}
\transl
\jour Comput. Math. Math. Phys.
\yr 2017
\vol 57
\issue 10
\pages 1559--1576
\crossref{https://doi.org/10.1134/S0965542517100037}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000414376700001}
\elib{https://elibrary.ru/item.asp?id=31046030}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85032740532}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10620
  • https://www.mathnet.ru/eng/zvmmf/v57/i10/p1581
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Æóðíàë âû÷èñëèòåëüíîé ìàòåìàòèêè è ìàòåìàòè÷åñêîé ôèçèêè Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:339
    Full-text PDF :54
    References:70
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024