Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2017, Volume 57, Number 9, Pages 1530–1547
DOI: https://doi.org/10.7868/S0044466917090137
(Mi zvmmf10616)
 

This article is cited in 5 scientific papers (total in 5 papers)

Vector domain decomposition schemes for parabolic equations

P. N. Vabishchevichab

a Nuclear Safety Institute, Russian Academy of Sciences, Moscow, Russia
b Ammosov North-Eastern Federal University, Yakutsk, Russia
Full-text PDF (248 kB) Citations (5)
References:
Abstract: A new class of domain decomposition schemes for finding approximate solutions of timedependent problems for partial differential equations is proposed and studied. A boundary value problem for a second-order parabolic equation is used as a model problem. The general approach to the construction of domain decomposition schemes is based on partition of unity. Specifically, a vector problem is set up for solving problems in individual subdomains. Stability conditions for vector regionally additive schemes of first- and second-order accuracy are obtained.
Key words: evolution equation, parabolic equation, finite element method, domain decomposition method, difference scheme, stability of difference schemes.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00785_а
Received: 20.10.2016
English version:
Computational Mathematics and Mathematical Physics, 2017, Volume 57, Issue 9, Pages 1511–1527
DOI: https://doi.org/10.1134/S0965542517090135
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: P. N. Vabishchevich, “Vector domain decomposition schemes for parabolic equations”, Zh. Vychisl. Mat. Mat. Fiz., 57:9 (2017), 1530–1547; Comput. Math. Math. Phys., 57:9 (2017), 1511–1527
Citation in format AMSBIB
\Bibitem{Vab17}
\by P.~N.~Vabishchevich
\paper Vector domain decomposition schemes for parabolic equations
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2017
\vol 57
\issue 9
\pages 1530--1547
\mathnet{http://mi.mathnet.ru/zvmmf10616}
\crossref{https://doi.org/10.7868/S0044466917090137}
\elib{https://elibrary.ru/item.asp?id=29961021}
\transl
\jour Comput. Math. Math. Phys.
\yr 2017
\vol 57
\issue 9
\pages 1511--1527
\crossref{https://doi.org/10.1134/S0965542517090135}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000412068500010}
\elib{https://elibrary.ru/item.asp?id=31078060}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85030163857}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10616
  • https://www.mathnet.ru/eng/zvmmf/v57/i9/p1530
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:210
    Full-text PDF :44
    References:45
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024