Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2017, Volume 57, Number 9, Pages 1503–1516
DOI: https://doi.org/10.7868/S0044466917090022
(Mi zvmmf10614)
 

This article is cited in 5 scientific papers (total in 5 papers)

Numerical solution of vector Sturm–Liouville problems with Dirichlet conditions and nonlinear dependence on the spectral parameter

L. D. Akulenkoabc, A. A. Gavrikovb, S. V. Nesterovb

a Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia
b Institute for Problems of Mechanics, Russian Academy of Sciences, Moscow, Russia
c Bauman Moscow State Technical University, Moscow, Russia
Full-text PDF (292 kB) Citations (5)
References:
Abstract: A numerical-analytical iterative method is proposed for solving generalized self-adjoint regular vector Sturm-Liouville problems with Dirichlet boundary conditions. The method is based on eigenvalue (spectral) correction. The matrix coefficients of the equations are assumed to be nonlinear functions of the spectral parameter. For a relatively close initial approximation, the method is shown to have second-order convergence with respect to a small parameter. Test examples are considered, and the model problem of transverse vibrations of a hinged rod with a variable cross section is solved taking into account its rotational inertia.
Key words: numerical solution of Sturm–Liouville problem, eigenvalues, eigenfunctions, boundary value problems, nonlinear dependence of coefficients on spectral parameter.
Funding agency Grant number
Russian Foundation for Basic Research 16-31-60078-мол_а_дк
15-01 -00827_а
Received: 28.06.2016
Revised: 20.10.2016
English version:
Computational Mathematics and Mathematical Physics, 2017, Volume 57, Issue 9, Pages 1484–1497
DOI: https://doi.org/10.1134/S0965542517090020
Bibliographic databases:
Document Type: Article
UDC: 519.62
Language: Russian
Citation: L. D. Akulenko, A. A. Gavrikov, S. V. Nesterov, “Numerical solution of vector Sturm–Liouville problems with Dirichlet conditions and nonlinear dependence on the spectral parameter”, Zh. Vychisl. Mat. Mat. Fiz., 57:9 (2017), 1503–1516; Comput. Math. Math. Phys., 57:9 (2017), 1484–1497
Citation in format AMSBIB
\Bibitem{AkuGavNes17}
\by L.~D.~Akulenko, A.~A.~Gavrikov, S.~V.~Nesterov
\paper Numerical solution of vector Sturm--Liouville problems with Dirichlet conditions and nonlinear dependence on the spectral parameter
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2017
\vol 57
\issue 9
\pages 1503--1516
\mathnet{http://mi.mathnet.ru/zvmmf10614}
\crossref{https://doi.org/10.7868/S0044466917090022}
\elib{https://elibrary.ru/item.asp?id=29961019}
\transl
\jour Comput. Math. Math. Phys.
\yr 2017
\vol 57
\issue 9
\pages 1484--1497
\crossref{https://doi.org/10.1134/S0965542517090020}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000412068500008}
\elib{https://elibrary.ru/item.asp?id=31108044}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85030177834}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10614
  • https://www.mathnet.ru/eng/zvmmf/v57/i9/p1503
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:252
    Full-text PDF :51
    References:54
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024