Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2017, Volume 57, Number 9, Pages 1444–1470
DOI: https://doi.org/10.7868/S0044466917090083
(Mi zvmmf10610)
 

This article is cited in 5 scientific papers (total in 5 papers)

Consistent convergence rate estimates in the grid $W_{2,0}^2(\omega)$ norm for difference schemes approximating nonlinear elliptic equations with mixed derivatives and solutions from $W_{2,0}^m(\Omega)$, $3<m\leqslant4$

F. V. Lubyshev, M. E. Fairuzov

Bashkir State University, Ufa, Bashkortostan, Russia
Full-text PDF (366 kB) Citations (5)
References:
Abstract: The Dirichlet boundary value problem for nonlinear elliptic equations with mixed derivatives and unbounded nonlinearity is considered. A difference scheme for solving this class of problems and an implementing iterative process are constructed and investigated. The convergence of the iterative process is rigorously analyzed. This process is used to prove the existence and uniqueness of a solution to the nonlinear difference scheme approximating the original differential problem. Consistent with the smoothness of the desired solution, convergence rate estimates in the discrete norm of $W_{2,0}^2(\omega)$ for difference schemes approximating the nonlinear equation with unbounded nonlinearity are established.
Key words: nonlinear elliptic equations, difference method, accuracy of difference approximations, iterative process.
Received: 20.10.2016
Revised: 16.01.2017
English version:
Computational Mathematics and Mathematical Physics, 2017, Volume 57, Issue 9, Pages 1427–1452
DOI: https://doi.org/10.1134/S0965542517090081
Bibliographic databases:
Document Type: Article
UDC: 519.626
Language: Russian
Citation: F. V. Lubyshev, M. E. Fairuzov, “Consistent convergence rate estimates in the grid $W_{2,0}^2(\omega)$ norm for difference schemes approximating nonlinear elliptic equations with mixed derivatives and solutions from $W_{2,0}^m(\Omega)$, $3<m\leqslant4$”, Zh. Vychisl. Mat. Mat. Fiz., 57:9 (2017), 1444–1470; Comput. Math. Math. Phys., 57:9 (2017), 1427–1452
Citation in format AMSBIB
\Bibitem{LubFai17}
\by F.~V.~Lubyshev, M.~E.~Fairuzov
\paper Consistent convergence rate estimates in the grid $W_{2,0}^2(\omega)$ norm for difference schemes approximating nonlinear elliptic equations with mixed derivatives and solutions from $W_{2,0}^m(\Omega)$, $3<m\leqslant4$
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2017
\vol 57
\issue 9
\pages 1444--1470
\mathnet{http://mi.mathnet.ru/zvmmf10610}
\crossref{https://doi.org/10.7868/S0044466917090083}
\elib{https://elibrary.ru/item.asp?id=29961015}
\transl
\jour Comput. Math. Math. Phys.
\yr 2017
\vol 57
\issue 9
\pages 1427--1452
\crossref{https://doi.org/10.1134/S0965542517090081}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000412068500004}
\elib{https://elibrary.ru/item.asp?id=31072550}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85030156911}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10610
  • https://www.mathnet.ru/eng/zvmmf/v57/i9/p1444
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:271
    Full-text PDF :38
    References:49
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024