Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2017, Volume 57, Number 7, Pages 1205–1229
DOI: https://doi.org/10.7868/S0044466917060126
(Mi zvmmf10592)
 

This article is cited in 3 scientific papers (total in 3 papers)

Slow nonisothermal flows: Numerical and asymptotic analysis of the Boltzmann equation

O. A. Rogozinab

a Moscow Institute of Physics and Technology, Dolgoprudny, Moscow oblast, Russia
b Dorodnicyn Computing Center, Federal Research Center “Computer Science and Control”, Russian Academy of Sciences, Moscow, Russia
References:
Abstract: Slow flows of a slightly rarefied gas under high thermal stresses are considered. The correct fluid-dynamic description of this class of flows is based on the Kogan–Galkin–Friedlander equations, containing some non-Navier–Stokes terms in the momentum equation. Appropriate boundary conditions are determined from the asymptotic analysis of the Knudsen layer on the basis of the Boltzmann equation. Boundary conditions up to the second order of the Knudsen number are studied. Some two-dimensional examples are examined for the comparative analysis. The fluid-dynamic results are supported by numerical solution of the Boltzmann equation obtained by the Tcheremissine's projection-interpolation discrete-velocity method extended for nonuniform grids. The competition pattern between the first- and the second-order nonlinear thermal-stress flows has been obtained for the first time.
Key words: Boltzmann equation, Kogan–Galkin–Friedlander equations, nonlinear thermal-stress flow, projection method, OpenFOAM.
Received: 22.07.2015
Revised: 14.06.2016
English version:
Computational Mathematics and Mathematical Physics, 2017, Volume 57, Issue 7, Pages 1201–1224
DOI: https://doi.org/10.1134/S0965542517060112
Bibliographic databases:
Document Type: Article
UDC: 519.634
Language: Russian
Citation: O. A. Rogozin, “Slow nonisothermal flows: Numerical and asymptotic analysis of the Boltzmann equation”, Zh. Vychisl. Mat. Mat. Fiz., 57:7 (2017), 1205–1229; Comput. Math. Math. Phys., 57:7 (2017), 1201–1224
Citation in format AMSBIB
\Bibitem{Rog17}
\by O.~A.~Rogozin
\paper Slow nonisothermal flows: Numerical and asymptotic analysis of the Boltzmann equation
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2017
\vol 57
\issue 7
\pages 1205--1229
\mathnet{http://mi.mathnet.ru/zvmmf10592}
\crossref{https://doi.org/10.7868/S0044466917060126}
\elib{https://elibrary.ru/item.asp?id=29404228}
\transl
\jour Comput. Math. Math. Phys.
\yr 2017
\vol 57
\issue 7
\pages 1201--1224
\crossref{https://doi.org/10.1134/S0965542517060112}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000406766300012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85026841248}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10592
  • https://www.mathnet.ru/eng/zvmmf/v57/i7/p1205
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:152
    Full-text PDF :39
    References:38
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024