Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2017, Volume 57, Number 4, Pages 710–729
DOI: https://doi.org/10.7868/S004446691702017X
(Mi zvmmf10565)
 

This article is cited in 25 scientific papers (total in 25 papers)

Entropy-conservative spatial discretization of the multidimensional quasi-gasdynamic system of equations

A. A. Zlotnik

National Research University Higher School of Economics, Moscow, Russia
References:
Abstract: The multidimensional quasi-gasdynamic system written in the form of mass, momentum, and total energy balance equations for a perfect polytropic gas with allowance for a body force and a heat source is considered. A new conservative symmetric spatial discretization of these equations on a nonuniform rectangular grid is constructed (with the basic unknown functions—density, velocity, and temperature—defined on a common grid and with fluxes and viscous stresses defined on staggered grids). Primary attention is given to the analysis of entropy behavior: the discretization is specially constructed so that the total entropy does not decrease. This is achieved via a substantial revision of the standard discretization and applying numerous original features. A simplification of the constructed discretization serves as a conservative discretization with nondecreasing total entropy for the simpler quasi-hydrodynamic system of equations. In the absence of regularizing terms, the results also hold for the Navier–Stokes equations of a viscous compressible heat-conducting gas.
Key words: Navier-Stokes equations for viscous compressible heat-conducting gases, quasi-gasdynamic system of equations, spatial discretization, conservativeness, law of nondecreasing entropy.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00048_а
Received: 09.03.2016
English version:
Computational Mathematics and Mathematical Physics, 2017, Volume 57, Issue 4, Pages 706–725
DOI: https://doi.org/10.1134/S0965542517020166
Bibliographic databases:
Document Type: Article
UDC: 519.634
Language: Russian
Citation: A. A. Zlotnik, “Entropy-conservative spatial discretization of the multidimensional quasi-gasdynamic system of equations”, Zh. Vychisl. Mat. Mat. Fiz., 57:4 (2017), 710–729; Comput. Math. Math. Phys., 57:4 (2017), 706–725
Citation in format AMSBIB
\Bibitem{Zlo17}
\by A.~A.~Zlotnik
\paper Entropy-conservative spatial discretization of the multidimensional quasi-gasdynamic system of equations
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2017
\vol 57
\issue 4
\pages 710--729
\mathnet{http://mi.mathnet.ru/zvmmf10565}
\crossref{https://doi.org/10.7868/S004446691702017X}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3651124}
\elib{https://elibrary.ru/item.asp?id=29331727}
\transl
\jour Comput. Math. Math. Phys.
\yr 2017
\vol 57
\issue 4
\pages 706--725
\crossref{https://doi.org/10.1134/S0965542517020166}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000401560700011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85019607586}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10565
  • https://www.mathnet.ru/eng/zvmmf/v57/i4/p710
  • This publication is cited in the following 25 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:341
    Full-text PDF :56
    References:51
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024