Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2017, Volume 57, Number 6, Pages 1003–1022
DOI: https://doi.org/10.7868/S0044466917020144
(Mi zvmmf10550)
 

This article is cited in 4 scientific papers (total in 4 papers)

Stability of the Kolmogorov flow and its modifications

S. V. Revinaab

a Southern Federal University, Rostov-on-Don, Russia
b Southern Mathematical Institute, Vladikavkaz Research Center, Russian Academy of Sciences and the Government of the Republic of North Ossetia-Alania, Vladikavkaz, Republic of North Ossetia-Alania, Russia
Full-text PDF (253 kB) Citations (4)
References:
Abstract: Recurrence formulas are obtained for the kth term of the long wavelength asymptotics in the stability problem for general two-dimensional viscous incompressible shear flows. It is shown that the eigenvalues of the linear eigenvalue problem are odd functions of the wave number, while the critical values of viscosity are even functions. If the velocity averaged over the long period is nonzero, then the loss of stability is oscillatory. If the averaged velocity is zero, then the loss of stability can be monotone or oscillatory. If the deviation of the velocity from its period-average value is an odd function of spatial variable about some $x_0$, then the expansion coefficients of the velocity perturbations are even functions about $x_0$ for even powers of the wave number and odd functions about for $x_0$ odd powers of the wave number, while the expansion coefficients of the pressure perturbations have an opposite property. In this case, the eigenvalues can be found precisely. As a result, the monotone loss of stability in the Kolmogorov flow can be substantiated by a method other than those available in the literature.
Key words: stability of two-dimensional viscous flows, Kolmogorov flow, long wavelength asymptotics.
Received: 15.02.2016
Revised: 19.05.2016
English version:
Computational Mathematics and Mathematical Physics, 2017, Volume 57, Issue 6, Pages 995–1012
DOI: https://doi.org/10.1134/S0965542517020130
Bibliographic databases:
Document Type: Article
UDC: 519.634
Language: Russian
Citation: S. V. Revina, “Stability of the Kolmogorov flow and its modifications”, Zh. Vychisl. Mat. Mat. Fiz., 57:6 (2017), 1003–1022; Comput. Math. Math. Phys., 57:6 (2017), 995–1012
Citation in format AMSBIB
\Bibitem{Rev17}
\by S.~V.~Revina
\paper Stability of the Kolmogorov flow and its modifications
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2017
\vol 57
\issue 6
\pages 1003--1022
\mathnet{http://mi.mathnet.ru/zvmmf10550}
\crossref{https://doi.org/10.7868/S0044466917020144}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3667398}
\elib{https://elibrary.ru/item.asp?id=29331751}
\transl
\jour Comput. Math. Math. Phys.
\yr 2017
\vol 57
\issue 6
\pages 995--1012
\crossref{https://doi.org/10.1134/S0965542517020130}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000404683100008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85021671953}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10550
  • https://www.mathnet.ru/eng/zvmmf/v57/i6/p1003
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:274
    Full-text PDF :33
    References:52
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024