Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2017, Volume 57, Number 6, Pages 907–920
DOI: https://doi.org/10.7868/S004446691706014X
(Mi zvmmf10543)
 

Computation of zeros of the alpha exponential function

S. L. Skorokhodov

Dorodnicyn Computing Center, Federal Research Center “Computer Science and Control”, Russian Academy of Sciences, Moscow, Russia
References:
Abstract: This paper deals with the function $F(\alpha; z)$ of complex variable $z$ defined by the expansion $F(\alpha; z)=\sum_{k=0}^\infty\frac{z^k}{(k!)^\alpha}$ which is a natural generalization of the exponential function (hence the name). Primary attention is given to finding relations concerning the locations of its zeros for $\alpha\in(0, 1)$. Note that the function $F(\alpha; z)$ arises in a number of modern problems in quantum mechanics and optics. For $\alpha=1/2,~1/3,~\dots$, approximations of $F(\alpha; z)$ are constructed using combinations of degenerate hypergeometric functions $_1F_1(a; c; z)$ and their asymptotic expansions as $z\to\infty$. These approximations to $F(\alpha; z)$ are used to approximate the countable set of complex zeros of this function in explicit form, and the resulting approximations are improved by applying Newton’s high-order accurate iterative method. A detailed numerical study reveals that the trajectories of the zeros under a varying parameter $\alpha\in(0, 1]$ have a complex structure. For $\alpha = 1/2$ and $1/3$, the first $30$ complex zeros of the function are calculated to high accuracy.
Key words: alpha exponential function, degenerate hypergeometric function, asymptotic expansions, complex zeros, Newton's method.
Received: 22.06.2016
English version:
Computational Mathematics and Mathematical Physics, 2017, Volume 57, Issue 6, Pages 905–918
DOI: https://doi.org/10.1134/S0965542517060136
Bibliographic databases:
Document Type: Article
UDC: 519.65
Language: Russian
Citation: S. L. Skorokhodov, “Computation of zeros of the alpha exponential function”, Zh. Vychisl. Mat. Mat. Fiz., 57:6 (2017), 907–920; Comput. Math. Math. Phys., 57:6 (2017), 905–918
Citation in format AMSBIB
\Bibitem{Sko17}
\by S.~L.~Skorokhodov
\paper Computation of zeros of the alpha exponential function
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2017
\vol 57
\issue 6
\pages 907--920
\mathnet{http://mi.mathnet.ru/zvmmf10543}
\crossref{https://doi.org/10.7868/S004446691706014X}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3667391}
\elib{https://elibrary.ru/item.asp?id=29331744}
\transl
\jour Comput. Math. Math. Phys.
\yr 2017
\vol 57
\issue 6
\pages 905--918
\crossref{https://doi.org/10.1134/S0965542517060136}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000404683100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85021670539}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10543
  • https://www.mathnet.ru/eng/zvmmf/v57/i6/p907
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:425
    Full-text PDF :87
    References:74
    First page:50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024