Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2017, Volume 57, Number 2, Pages 350–361
DOI: https://doi.org/10.7868/S0044466917020119
(Mi zvmmf10526)
 

This article is cited in 2 scientific papers (total in 2 papers)

Aggregation of multiple metric descriptions from distances between unlabeled objects

A. I. Maysuradze, M. A. Suvorov

Faculty of Computational Mathematics and Cybernetics, Moscow State University, Moscow, Russia
Full-text PDF (185 kB) Citations (2)
References:
Abstract: The situation when there are several different semimetrics on the set of objects in the recognition problem is considered. The problem of aggregating distances based on an unlabeled sample is stated and investigated. In other words, the problem of unsupervised reduction of the dimension of multiple metric descriptions is considered. This problem is reduced to the approximation of the original distances in the form of optimal matrix factorization subject to additional metric constraints. It is proposed to solve this problem exactly using the metric nonnegative matrix factorization. In terms of the problem statement and solution procedure, the metric data method is an analog of the principal component method for feature-oriented descriptions. It is proved that the addition of metric requirements does not decrease the quality of approximation. The operation of the method is demonstrated using toy and real-life examples.
Key words: multiple metric descriptions, multiple metric spaces, similarity measures, dimension reduction, nonnegative matrix factorization (NMF), principal component analysis (PCA).
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00196_а
16-57-45054_ИНД_а
15-07-09214_а
Received: 28.04.2015
English version:
Computational Mathematics and Mathematical Physics, 2017, Volume 57, Issue 2, Pages 350–361
DOI: https://doi.org/10.1134/S0965542517020105
Bibliographic databases:
Document Type: Article
UDC: 519.7
Language: Russian
Citation: A. I. Maysuradze, M. A. Suvorov, “Aggregation of multiple metric descriptions from distances between unlabeled objects”, Zh. Vychisl. Mat. Mat. Fiz., 57:2 (2017), 350–361; Comput. Math. Math. Phys., 57:2 (2017), 350–361
Citation in format AMSBIB
\Bibitem{MasSuv17}
\by A.~I.~Maysuradze, M.~A.~Suvorov
\paper Aggregation of multiple metric descriptions from distances between unlabeled objects
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2017
\vol 57
\issue 2
\pages 350--361
\mathnet{http://mi.mathnet.ru/zvmmf10526}
\crossref{https://doi.org/10.7868/S0044466917020119}
\elib{https://elibrary.ru/item.asp?id=28918678}
\transl
\jour Comput. Math. Math. Phys.
\yr 2017
\vol 57
\issue 2
\pages 350--361
\crossref{https://doi.org/10.1134/S0965542517020105}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000397983100011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85032927040}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10526
  • https://www.mathnet.ru/eng/zvmmf/v57/i2/p350
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025