Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2017, Volume 57, Number 2, Page 302
DOI: https://doi.org/10.7868/S0044466917020041
(Mi zvmmf10522)
 

This article is cited in 18 scientific papers (total in 18 papers)

A new sequential approach for solving the integro-differential equation via Haar wavelet bases

H. Beiglo, M. Erfanian, M. Gachpazan

Department of Applied Mathematics, School of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
Full-text PDF (31 kB) Citations (18)
References:
Abstract: In this work, we present a method for numerical approximation of fixed point operator, particularly for the mixed Volterra–Fredholm integro-differential equations. The main tool for error analysis is the Banach fixed point theorem. The advantage of this method is that it does not use numerical integration, we use the properties of rationalized Haar wavelets for approximate of integral. The cost of our algorithm increases accuracy and reduces the calculation, considerably. Some examples are provided toillustrate its high accuracy and numerical results are compared with other methods in the other papers.
Key words: rationalized Haar wavelet, nonlinear integro-differential equation, operational matrix, fixed point theorem, error analysis.
Received: 10.04.2014
Revised: 18.08.2014
English version:
Computational Mathematics and Mathematical Physics, 2017, Volume 57, Issue 2, Pages 297–305
DOI: https://doi.org/10.1134/S096554251702004X
Bibliographic databases:
Document Type: Article
UDC: 519.642.2
Language: English
Citation: H. Beiglo, M. Erfanian, M. Gachpazan, “A new sequential approach for solving the integro-differential equation via Haar wavelet bases”, Zh. Vychisl. Mat. Mat. Fiz., 57:2 (2017), 302; Comput. Math. Math. Phys., 57:2 (2017), 297–305
Citation in format AMSBIB
\Bibitem{BeiErfGac17}
\by H.~Beiglo, M.~Erfanian, M.~Gachpazan
\paper A new sequential approach for solving the integro-differential equation via Haar wavelet bases
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2017
\vol 57
\issue 2
\pages 302
\mathnet{http://mi.mathnet.ru/zvmmf10522}
\crossref{https://doi.org/10.7868/S0044466917020041}
\elib{https://elibrary.ru/item.asp?id=28918674}
\transl
\jour Comput. Math. Math. Phys.
\yr 2017
\vol 57
\issue 2
\pages 297--305
\crossref{https://doi.org/10.1134/S096554251702004X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000397983100007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85032955233}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10522
  • https://www.mathnet.ru/eng/zvmmf/v57/i2/p302
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025