Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2017, Volume 57, Number 2, Pages 187–209
DOI: https://doi.org/10.7868/S0044466917020089
(Mi zvmmf10516)
 

This article is cited in 9 scientific papers (total in 9 papers)

Inverse final observation problems for Maxwell's equations in the quasi-stationary magnetic approximation and stable sequential Lagrange principles for their solving

A. V. Kalinin, M. I. Sumin, A. A. Tyukhtina

Nizhny Novgorod State University, Nizhny Novgorod, Russia
Full-text PDF (242 kB) Citations (9)
References:
Abstract: An initial-boundary value problem for Maxwell's equations in the quasi-stationary magnetic approximation is investigated. Special gauge conditions are presented that make it possible to state the problem of independently determining the vector magnetic potential. The well-posedness of the problem is proved under general conditions on the coefficients. For quasi-stationary Maxwell equations, final observation problems formulated in terms of the vector magnetic potential are considered. They are treated as convex programming problems in a Hilbert space with an operator equality constraint. Stable sequential Lagrange principles are stated in the form of theorems on the existence of a minimizing approximate solution of the optimization problems under consideration. The possibility of applying algorithms of dual regularization and iterative dual regularization with a stopping rule is justified in the case of a finite observation error.
Key words: Maxwell's equations in quasi-stationary magnetic approximation, vector potential, gauge conditions, inverse final observation problem, retrospective inverse problem, convex programming, Lagrange principle, dual regularization, iterative dual regularization, stopping rule.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 2664
1727
02.В.49.21.0003
Received: 18.11.2014
Revised: 03.06.2016
English version:
Computational Mathematics and Mathematical Physics, 2017, Volume 57, Issue 2, Pages 189–210
DOI: https://doi.org/10.1134/S0965542517020075
Bibliographic databases:
Document Type: Article
UDC: 519.626
Language: Russian
Citation: A. V. Kalinin, M. I. Sumin, A. A. Tyukhtina, “Inverse final observation problems for Maxwell's equations in the quasi-stationary magnetic approximation and stable sequential Lagrange principles for their solving”, Zh. Vychisl. Mat. Mat. Fiz., 57:2 (2017), 187–209; Comput. Math. Math. Phys., 57:2 (2017), 189–210
Citation in format AMSBIB
\Bibitem{KalSumTyu17}
\by A.~V.~Kalinin, M.~I.~Sumin, A.~A.~Tyukhtina
\paper Inverse final observation problems for Maxwell's equations in the quasi-stationary magnetic approximation and stable sequential Lagrange principles for their solving
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2017
\vol 57
\issue 2
\pages 187--209
\mathnet{http://mi.mathnet.ru/zvmmf10516}
\crossref{https://doi.org/10.7868/S0044466917020089}
\elib{https://elibrary.ru/item.asp?id=28918667}
\transl
\jour Comput. Math. Math. Phys.
\yr 2017
\vol 57
\issue 2
\pages 189--210
\crossref{https://doi.org/10.1134/S0965542517020075}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000397983100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85032912313}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10516
  • https://www.mathnet.ru/eng/zvmmf/v57/i2/p187
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024