Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2017, Volume 57, Number 1, Pages 55–68
DOI: https://doi.org/10.7868/S0044466917010100
(Mi zvmmf10507)
 

This article is cited in 6 scientific papers (total in 6 papers)

Stable iterative Lagrange principle in convex programming as a tool for solving unstable problems

F. A. Kuterin, M. I. Sumin

Nizhny Novgorod State University, Nizhny Novgorod, Russia
Full-text PDF (214 kB) Citations (6)
References:
Abstract: A convex programming problem in a Hilbert space with an operator equality constraint and a finite number of functional inequality constraints is considered. All constraints involve parameters. The close relation of the instability of this problem and, hence, the instability of the classical Lagrange principle for it to its regularity properties and the subdifferentiability of the value function in the problem is discussed. An iterative nondifferential Lagrange principle with a stopping rule is proved for the indicated problem. The principle is stable with respect to errors in the initial data and covers the normal, regular, and abnormal cases of the problem and the case where the classical Lagrange principle does not hold. The possibility of using the stable sequential Lagrange principle for directly solving unstable optimization problems is discussed. The capabilities of this principle are illustrated by numerically solving the classical ill-posed problem of finding the normal solution of a Fredholm integral equation of the first kind.
Key words: convex programming, instability, sequential optimization, iterative dual regularization, regularized Lagrange principle in iterative form, unstable problems, Fredholm integral equation of first kind.
Funding agency Grant number
Russian Foundation for Basic Research 15-47-02294-р_поволжье_а
17-01-00612_а
17-07-00488_а
Ministry of Education and Science of the Russian Federation 1727
02.В.49.21.0003
Received: 03.02.2016
English version:
Computational Mathematics and Mathematical Physics, 2017, Volume 57, Issue 1, Pages 71–82
DOI: https://doi.org/10.1134/S0965542517010092
Bibliographic databases:
Document Type: Article
UDC: 519.858
Language: Russian
Citation: F. A. Kuterin, M. I. Sumin, “Stable iterative Lagrange principle in convex programming as a tool for solving unstable problems”, Zh. Vychisl. Mat. Mat. Fiz., 57:1 (2017), 55–68; Comput. Math. Math. Phys., 57:1 (2017), 71–82
Citation in format AMSBIB
\Bibitem{KutSum17}
\by F.~A.~Kuterin, M.~I.~Sumin
\paper Stable iterative Lagrange principle in convex programming as a tool for solving unstable problems
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2017
\vol 57
\issue 1
\pages 55--68
\mathnet{http://mi.mathnet.ru/zvmmf10507}
\crossref{https://doi.org/10.7868/S0044466917010100}
\elib{https://elibrary.ru/item.asp?id=28107147}
\transl
\jour Comput. Math. Math. Phys.
\yr 2017
\vol 57
\issue 1
\pages 71--82
\crossref{https://doi.org/10.1134/S0965542517010092}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000394351900006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85013119701}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10507
  • https://www.mathnet.ru/eng/zvmmf/v57/i1/p55
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025