Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2017, Volume 57, Number 1, Page 29
DOI: https://doi.org/10.7868/S0044466917010112
(Mi zvmmf10504)
 

This article is cited in 1 scientific paper (total in 1 paper)

Weighted cubic and biharmonic splines

B. Kvasova, Tae-Wan Kimb

a Department of Mathematical Modeling, Institute of Computational Technologies, Russian Academy of Sciences, Novosibirsk, Russia
b Deparment of Naval Architecture and Ocean Engineering, and Research Institute of Marine Systems Engineering, Seoul National University, Seoul, Korea
Full-text PDF (31 kB) Citations (1)
Abstract: In this paper we discuss the design of algorithms for interpolating discrete data by using weighted cubic and biharmonic splines in such a way that the monotonicity and convexity of the data are preserved. We formulate the problem as a differential multipoint boundary value problem and consider its finite-difference approximation. Two algorithms for automatic selection of shape control parameters (weights) are presented. For weighted biharmonic splines the resulting system of linear equations can be efficiently solved by combining Gaussian elimination with successive over-relaxation method or finite-difference schemes in fractional steps. We consider basic computational aspects and illustrate main features of this original approach.
Key words: monotone and convex interpolation, weighted cubic and biharmonic splines, adaptive choice of shape control parameters, differential multipoint boundary value problem, successive overrelaxation method, finite-difference schemes in fractional steps.
Received: 06.07.2015
Revised: 11.08.2015
English version:
Computational Mathematics and Mathematical Physics, 2017, Volume 57, Issue 1, Pages 26–44
DOI: https://doi.org/10.1134/S0965542517010109
Bibliographic databases:
Document Type: Article
UDC: 519.652.3
Language: English
Citation: B. Kvasov, Tae-Wan Kim, “Weighted cubic and biharmonic splines”, Zh. Vychisl. Mat. Mat. Fiz., 57:1 (2017), 29; Comput. Math. Math. Phys., 57:1 (2017), 26–44
Citation in format AMSBIB
\Bibitem{KvaKim17}
\by B.~Kvasov, Tae-Wan~Kim
\paper Weighted cubic and biharmonic splines
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2017
\vol 57
\issue 1
\pages 29
\mathnet{http://mi.mathnet.ru/zvmmf10504}
\crossref{https://doi.org/10.7868/S0044466917010112}
\elib{https://elibrary.ru/item.asp?id=28107144}
\transl
\jour Comput. Math. Math. Phys.
\yr 2017
\vol 57
\issue 1
\pages 26--44
\crossref{https://doi.org/10.1134/S0965542517010109}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000394351900003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85013041900}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10504
  • https://www.mathnet.ru/eng/zvmmf/v57/i1/p29
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025