Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2017, Volume 57, Number 1, Pages 9–28
DOI: https://doi.org/10.7868/S0044466917010057
(Mi zvmmf10503)
 

This article is cited in 21 scientific papers (total in 21 papers)

Cubic spline interpolation of functions with high gradients in boundary layers

I. A. Blatova, A. I. Zadorinb, E. V. Kitaevac

a Volga State University of Telecommunications and Informatics, Samara, Russia
b Sobolev Institute of Mathematics (Omsk Branch), Siberian Branch, Russian Academy of Sciences, Omsk, Russia
c Samara State University, Samara, Russia
References:
Abstract: The cubic spline interpolation of grid functions with high-gradient regions is considered. Uniform meshes are proved to be inefficient for this purpose. In the case of widely applied piecewise uniform Shishkin meshes, asymptotically sharp two-sided error estimates are obtained in the class of functions with an exponential boundary layer. It is proved that the error estimates of traditional spline interpolation are not uniform with respect to a small parameter, and the error can increase indefinitely as the small parameter tends to zero, while the number of nodes $N$ is fixed. A modified cubic interpolation spline is proposed, for which $O((\ln N/N)^4)$ error estimates that are uniform with respect to the small parameter are obtained.
Key words: singular perturbation, boundary layer, Shishkin mesh, cubic spline, modification, error estimate.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-06584_а
16-01-00727_а
Received: 03.02.2016
Revised: 31.03.2016
English version:
Computational Mathematics and Mathematical Physics, 2017, Volume 57, Issue 1, Pages 7–25
DOI: https://doi.org/10.1134/S0965542517010043
Bibliographic databases:
Document Type: Article
UDC: 519.652.3
Language: Russian
Citation: I. A. Blatov, A. I. Zadorin, E. V. Kitaeva, “Cubic spline interpolation of functions with high gradients in boundary layers”, Zh. Vychisl. Mat. Mat. Fiz., 57:1 (2017), 9–28; Comput. Math. Math. Phys., 57:1 (2017), 7–25
Citation in format AMSBIB
\Bibitem{BlaZadKit17}
\by I.~A.~Blatov, A.~I.~Zadorin, E.~V.~Kitaeva
\paper Cubic spline interpolation of functions with high gradients in boundary layers
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2017
\vol 57
\issue 1
\pages 9--28
\mathnet{http://mi.mathnet.ru/zvmmf10503}
\crossref{https://doi.org/10.7868/S0044466917010057}
\elib{https://elibrary.ru/item.asp?id=28107143}
\transl
\jour Comput. Math. Math. Phys.
\yr 2017
\vol 57
\issue 1
\pages 7--25
\crossref{https://doi.org/10.1134/S0965542517010043}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000394351900002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85013106554}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10503
  • https://www.mathnet.ru/eng/zvmmf/v57/i1/p9
  • This publication is cited in the following 21 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025