Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2016, Volume 56, Number 11, Pages 1889–1901
DOI: https://doi.org/10.7868/S0044466916110053
(Mi zvmmf10487)
 

This article is cited in 2 scientific papers (total in 2 papers)

Modified Kantorovich theorem and asymptotic approximations of solutions to singularly perturbed systems of ordinary differential equations

A. A. Belolipetskiia, A. M. Ter-Krikorovb

a Dorodnicyn Computing Center, Federal Research Center "Computer Science and Control", Russian Academy of Sciences, Moscow, Russia
b Moscow Institute of Physics and Technology, Dolgoprudnyi, Moscow oblast, Russia
Full-text PDF (231 kB) Citations (2)
References:
Abstract: The functional equation $f(x,\varepsilon)=0$ containing a small parameter $\varepsilon$ and admitting regular and singular degeneracy as $\varepsilon\to0$ is considered. By the methods of small parameter, a function $x_n^0(\varepsilon)$ satisfying this equation within a residual error of $O(\varepsilon^{n+1})$ is found. A modified Newton's sequence starting from the element $x_n^0(\varepsilon)$ is constructed. The existence of the limit of Newton's sequence is based on the NK theorem proven in this work (a new variant of the proof of the Kantorovich theorem substantiating the convergence of Newton's iterative sequence). The deviation of the limit of Newton's sequence from the initial approximation $x_n^0(\varepsilon)$ has the order of $O(\varepsilon^{n+1})$, which proves the asymptotic character of the approximation $x_n^0(\varepsilon)$. The method proposed is implemented in constructing an asymptotic approximation of a system of ordinary differential equations on a finite or infinite time interval with a small parameter multiplying the derivatives, but it can be applied to a wider class of functional equations with a small parameters.
Key words: modified Newton's sequence, small parameters, singular degeneracy, asymptotic approximations, approximate solution to a system of ordinary differential equations, modified Kantorovich theorem.
Received: 05.10.2015
Revised: 26.02.2016
English version:
Computational Mathematics and Mathematical Physics, 2016, Volume 56, Issue 11, Pages 1859–1871
DOI: https://doi.org/10.1134/S0965542516110051
Bibliographic databases:
Document Type: Article
UDC: 519.62
Language: Russian
Citation: A. A. Belolipetskii, A. M. Ter-Krikorov, “Modified Kantorovich theorem and asymptotic approximations of solutions to singularly perturbed systems of ordinary differential equations”, Zh. Vychisl. Mat. Mat. Fiz., 56:11 (2016), 1889–1901; Comput. Math. Math. Phys., 56:11 (2016), 1859–1871
Citation in format AMSBIB
\Bibitem{BelTer16}
\by A.~A.~Belolipetskii, A.~M.~Ter-Krikorov
\paper Modified Kantorovich theorem and asymptotic approximations of solutions to singularly perturbed systems of ordinary differential equations
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2016
\vol 56
\issue 11
\pages 1889--1901
\mathnet{http://mi.mathnet.ru/zvmmf10487}
\crossref{https://doi.org/10.7868/S0044466916110053}
\elib{https://elibrary.ru/item.asp?id=27148426}
\transl
\jour Comput. Math. Math. Phys.
\yr 2016
\vol 56
\issue 11
\pages 1859--1871
\crossref{https://doi.org/10.1134/S0965542516110051}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000389803600004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85000786863}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10487
  • https://www.mathnet.ru/eng/zvmmf/v56/i11/p1889
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024