Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2016, Volume 56, Number 11, Pages 1931–1948
DOI: https://doi.org/10.7868/S0044466916110041
(Mi zvmmf10484)
 

This article is cited in 2 scientific papers (total in 2 papers)

Generation of Delaunay meshes in implicit domains with edge sharpening

A. I. Belokrys-Fedotovab, V. A. Garanzhaab, L. N. Kudryavtsevaab

a Moscow Institute of Physics and Technology, Dolgoprudnyi, Moscow oblast, Russia
b Dorodnicyn Computing Center, Federal Research Center "Computer Science and Control", Russian Academy of Sciences, Moscow, Russia
References:
Abstract: A variational algorithm for the construction of 3D Delaunay meshes in implicit domains with a nonsmooth boundary is proposed. The algorithm is based on the self-organization of an elastic network in which each Delaunay edge is interpreted as an elastic strut. The elastic potential is constructed as a combination of the repulsion potential and the sharpening potential. The sharpening potential is applied only on the boundary and is used to minimize the deviation of the outward normals to the boundary faces from the direction of the gradient of the implicit function. Numerical experiments showed that in the case when the implicit function specifying the domain is considerably different from the signed distance function, the use of the sharpening potential proposed by Belyaev and Ohtake in 2002 leads to the mesh instability. A stable version of the sharpening potential is proposed. The numerical experiments showed that acceptable Delaunay meshes for complex shaped domains with sharp curved boundary edges can be constructed.
Key words: Delaunay meshes, elastic networks, sharp edge sharpening, variational method, surface reconstruction, implicitly specified domains.
Received: 21.12.2015
Revised: 26.04.2016
English version:
Computational Mathematics and Mathematical Physics, 2016, Volume 56, Issue 11, Pages 1901–1918
DOI: https://doi.org/10.1134/S096554251611004X
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: A. I. Belokrys-Fedotov, V. A. Garanzha, L. N. Kudryavtseva, “Generation of Delaunay meshes in implicit domains with edge sharpening”, Zh. Vychisl. Mat. Mat. Fiz., 56:11 (2016), 1931–1948; Comput. Math. Math. Phys., 56:11 (2016), 1901–1918
Citation in format AMSBIB
\Bibitem{BelGarKud16}
\by A.~I.~Belokrys-Fedotov, V.~A.~Garanzha, L.~N.~Kudryavtseva
\paper Generation of Delaunay meshes in implicit domains with edge sharpening
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2016
\vol 56
\issue 11
\pages 1931--1948
\mathnet{http://mi.mathnet.ru/zvmmf10484}
\crossref{https://doi.org/10.7868/S0044466916110041}
\elib{https://elibrary.ru/item.asp?id=27148428}
\transl
\jour Comput. Math. Math. Phys.
\yr 2016
\vol 56
\issue 11
\pages 1901--1918
\crossref{https://doi.org/10.1134/S096554251611004X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000389803600006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85000788645}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10484
  • https://www.mathnet.ru/eng/zvmmf/v56/i11/p1931
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024