Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2016, Volume 56, Number 11, Pages 1872–1888
DOI: https://doi.org/10.7868/S0044466916110089
(Mi zvmmf10480)
 

This article is cited in 6 scientific papers (total in 6 papers)

Multicriteria identification sets method

G. K. Kamenev

Dorodnicyn Computing Center, Federal Research Center "Computer Science and Control", Russian Academy of Sciences, Moscow, Russia
Full-text PDF (627 kB) Citations (6)
References:
Abstract: A multicriteria identification and prediction method for mathematical models of simulation type in the case of several identification criteria (error functions) is proposed. The necessity of the multicriteria formulation arises, for example, when one needs to take into account errors of completely different origins (not reducible to a single characteristic) or when there is no information on the class of noise in the data to be analyzed. An identification sets method is described based on the approximation and visualization of the multidimensional graph of the identification error function and sets of suboptimal parameters. This method allows for additional advantages of the multicriteria approach, namely, the construction and visual analysis of the frontier and the effective identification set (frontier and the Pareto set for identification criteria), various representations of the sets of Pareto effective and subeffective parameter combinations, and the corresponding predictive trajectory tubes. The approximation is based on the deep holes method, which yields metric ε-coverings with nearly optimal properties, and on multiphase approximation methods for the Edgeworth-Pareto hull. The visualization relies on the approach of interactive decision maps. With the use of the multicriteria method, multiple-choice solutions of identification and prediction problems can be produced and justified by analyzing the stability of the optimal solution not only with respect to the parameters (robustness with respect to data) but also with respect to the chosen set of identification criteria (robustness with respect to the given collection of functionals).
Key words: mathematical simulation, simulation model, identification, prediction, trajectory tubes, robustness, multiobjective optimization, multiobjective decision making, effective set, Pareto frontier, Pareto set, Edgeworth–Pareto hull, optimal and suboptimal solutions, effective and subeffective solutions, identification sets method, feasible goals method, deep holes method, interactive decision maps, approximation, visualization.
Funding agency Grant number
Russian Science Foundation 14-11-00432
Received: 21.09.2015
Revised: 05.05.2016
English version:
Computational Mathematics and Mathematical Physics, 2016, Volume 56, Issue 11, Pages 1843–1858
DOI: https://doi.org/10.1134/S0965542516110087
Bibliographic databases:
Document Type: Article
UDC: 519.6.26
Language: Russian
Citation: G. K. Kamenev, “Multicriteria identification sets method”, Zh. Vychisl. Mat. Mat. Fiz., 56:11 (2016), 1872–1888; Comput. Math. Math. Phys., 56:11 (2016), 1843–1858
Citation in format AMSBIB
\Bibitem{Kam16}
\by G.~K.~Kamenev
\paper Multicriteria identification sets method
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2016
\vol 56
\issue 11
\pages 1872--1888
\mathnet{http://mi.mathnet.ru/zvmmf10480}
\crossref{https://doi.org/10.7868/S0044466916110089}
\elib{https://elibrary.ru/item.asp?id=27148425}
\transl
\jour Comput. Math. Math. Phys.
\yr 2016
\vol 56
\issue 11
\pages 1843--1858
\crossref{https://doi.org/10.1134/S0965542516110087}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000389803600003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85000666339}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10480
  • https://www.mathnet.ru/eng/zvmmf/v56/i11/p1872
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024