Abstract:
In the plane case, the initial-boundary value problem for a thermoelastic medium model with a rheological relation determined by the Jeffreys–Oldroyd model is shown to be nonlocally weakly solvable. The study is based on separating the system, reducing it to an operator equation, and performing an iterative process.
Key words:
thermoviscoelastic medium, equations of motion, initial-boundary value problem, weak solution.
Citation:
V. G. Zvyagin, V. P. Orlov, “On a model of thermoviscoelasticity of Jeffreys–Oldroyd type”, Zh. Vychisl. Mat. Mat. Fiz., 56:10 (2016), 1821–1830; Comput. Math. Math. Phys., 56:10 (2016), 1803–1812
\Bibitem{ZvyOrl16}
\by V.~G.~Zvyagin, V.~P.~Orlov
\paper On a model of thermoviscoelasticity of Jeffreys--Oldroyd type
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2016
\vol 56
\issue 10
\pages 1821--1830
\mathnet{http://mi.mathnet.ru/zvmmf10478}
\crossref{https://doi.org/10.7868/S004446691610015X}
\elib{https://elibrary.ru/item.asp?id=26665213}
\transl
\jour Comput. Math. Math. Phys.
\yr 2016
\vol 56
\issue 10
\pages 1803--1812
\crossref{https://doi.org/10.1134/S0965542516100158}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000386769200013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84992416415}
Linking options:
https://www.mathnet.ru/eng/zvmmf10478
https://www.mathnet.ru/eng/zvmmf/v56/i10/p1821
This publication is cited in the following 3 articles:
V. G. Zvyagin, V. P. Orlov, “On weak solvability of a flow problem for viscoelastic fluid with memory”, Comput. Math. Math. Phys., 63:11 (2023), 2090–2106
V. G. Zvyagin, V. P. Orlov, “On regularity of weak solutions to a generalized Voigt model of viscoelasticity”, Comput. Math. Math. Phys., 60:11 (2020), 1872–1888
A. V. Zvyagin, V. G. Zvyagin, D. M. Polyakov, “Dissipative solvability of an alpha model of fluid flow with memory”, Comput. Math. Math. Phys., 59:7 (2019), 1185–1198