|
Computation of eigenfunctions and eigenvalues for the Sturm–Liouville problem with Dirichlet boundary conditions at the left endpoint and Neumann conditions at the right endpoint
M. M. Khapaev, T. M. Khapaeva Faculty of Computational Mathematics and Cybernetics, Moscow State University, Moscow, Russia
Abstract:
A functional-based variational method is proposed for finding the eigenfunctions and eigenvalues in the Sturm–Liouville problem with Dirichlet boundary conditions at the left endpoint and Neumann conditions at the right endpoint. Computations are performed for three potentials: $\sin((x-\pi)^2/\pi)$, $\cos(4x)$, and a high nonisosceles triangle.
Key words:
Sturm–Liouville problem, method for computing eigenvalues and eigenfunctions, variational computational method.
Received: 27.10.2015
Citation:
M. M. Khapaev, T. M. Khapaeva, “Computation of eigenfunctions and eigenvalues for the Sturm–Liouville problem with Dirichlet boundary conditions at the left endpoint and Neumann conditions at the right endpoint”, Zh. Vychisl. Mat. Mat. Fiz., 56:10 (2016), 1750–1753; Comput. Math. Math. Phys., 56:10 (2016), 1732–1736
Linking options:
https://www.mathnet.ru/eng/zvmmf10470 https://www.mathnet.ru/eng/zvmmf/v56/i10/p1750
|
|