Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2016, Volume 56, Number 9, Pages 1614–1621
DOI: https://doi.org/10.7868/S0044466916090088
(Mi zvmmf10457)
 

This article is cited in 2 scientific papers (total in 2 papers)

Approximate solution of the $p$-median minimization problem

V. P. Il'evab, S. D. Il'evab, A. A. Navrotskayaab

a Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
b Omsk State University, Omsk, Russia
Full-text PDF (113 kB) Citations (2)
References:
Abstract: A version of the facility location problem (the well-known $p$-median minimization problem) and its generalization — the problem of minimizing a supermodular set function — is studied. These problems are NP-hard, and they are approximately solved by a gradient algorithm that is a discrete analog of the steepest descent algorithm. A priori bounds on the worst-case behavior of the gradient algorithm for the problems under consideration are obtained. As a consequence, a bound on the performance guarantee of the gradient algorithm for the $p$-median minimization problem in terms of the production and transportation cost matrix is obtained.
Key words: combinatorial optimization, $p$-median, supermodular set function, gradient algorithm, performance guarantee.
Funding agency Grant number
Russian Science Foundation 15-11-10009
Received: 16.11.2015
Revised: 16.02.2016
English version:
Computational Mathematics and Mathematical Physics, 2016, Volume 56, Issue 9, Pages 1591–1597
DOI: https://doi.org/10.1134/S0965542516090074
Bibliographic databases:
Document Type: Article
UDC: 519.8
Language: Russian
Citation: V. P. Il'ev, S. D. Il'eva, A. A. Navrotskaya, “Approximate solution of the $p$-median minimization problem”, Zh. Vychisl. Mat. Mat. Fiz., 56:9 (2016), 1614–1621; Comput. Math. Math. Phys., 56:9 (2016), 1591–1597
Citation in format AMSBIB
\Bibitem{IleIleNav16}
\by V.~P.~Il'ev, S.~D.~Il'eva, A.~A.~Navrotskaya
\paper Approximate solution of the $p$-median minimization problem
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2016
\vol 56
\issue 9
\pages 1614--1621
\mathnet{http://mi.mathnet.ru/zvmmf10457}
\crossref{https://doi.org/10.7868/S0044466916090088}
\elib{https://elibrary.ru/item.asp?id=26498085}
\transl
\jour Comput. Math. Math. Phys.
\yr 2016
\vol 56
\issue 9
\pages 1591--1597
\crossref{https://doi.org/10.1134/S0965542516090074}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000385164100007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84989810748}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10457
  • https://www.mathnet.ru/eng/zvmmf/v56/i9/p1614
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:219
    Full-text PDF :134
    References:49
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024