Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2016, Volume 56, Number 9, Pages 1571–1585
DOI: https://doi.org/10.7868/S0044466916090118
(Mi zvmmf10453)
 

This article is cited in 1 scientific paper (total in 1 paper)

Numerical continuation of solution at a singular point of high codimension for systems of nonlinear algebraic or transcendental equations

S. D. Krasnikov, E. B. Kuznetsov

Moscow Institute of Aviation, Moscow, Russia
Full-text PDF (402 kB) Citations (1)
References:
Abstract: Numerical continuation of solution through certain singular points of the curve of the set of solutions to a system of nonlinear algebraic or transcendental equations with a parameter is considered. Bifurcation points of codimension two and three are investigated. Algorithms and computer programs are developed that implement the procedure of discrete parametric continuation of the solution and find all branches at simple bifurcation points of codimension two and three. Corresponding theorems are proved, and each algorithm is rigorously justified. A novel algorithm for the estimation of errors of tangential vectors at simple bifurcation points of a finite codimension $m$ is proposed. The operation of the computer programs is demonstrated by test examples, which allows one to estimate their efficiency and confirm the theoretical results.
Key words: singular point, simple bifurcation point, codimension, Lyapunov–Schmidt reduction, bifurcation equation, Levin’s method, continuation method, nonlinear algebraic and transcendental equations.
Funding agency Grant number
Russian Foundation for Basic Research 16-08-00943_а
Received: 30.11.2015
English version:
Computational Mathematics and Mathematical Physics, 2016, Volume 56, Issue 9, Pages 1551–1564
DOI: https://doi.org/10.1134/S0965542516090104
Bibliographic databases:
Document Type: Article
UDC: 519.615.5
Language: Russian
Citation: S. D. Krasnikov, E. B. Kuznetsov, “Numerical continuation of solution at a singular point of high codimension for systems of nonlinear algebraic or transcendental equations”, Zh. Vychisl. Mat. Mat. Fiz., 56:9 (2016), 1571–1585; Comput. Math. Math. Phys., 56:9 (2016), 1551–1564
Citation in format AMSBIB
\Bibitem{KraKuz16}
\by S.~D.~Krasnikov, E.~B.~Kuznetsov
\paper Numerical continuation of solution at a singular point of high codimension for systems of nonlinear algebraic or transcendental equations
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2016
\vol 56
\issue 9
\pages 1571--1585
\mathnet{http://mi.mathnet.ru/zvmmf10453}
\crossref{https://doi.org/10.7868/S0044466916090118}
\elib{https://elibrary.ru/item.asp?id=26498082}
\transl
\jour Comput. Math. Math. Phys.
\yr 2016
\vol 56
\issue 9
\pages 1551--1564
\crossref{https://doi.org/10.1134/S0965542516090104}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000385164100004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84989909646}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10453
  • https://www.mathnet.ru/eng/zvmmf/v56/i9/p1571
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:238
    Full-text PDF :47
    References:53
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024