Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2016, Volume 56, Number 9, Pages 1657–1666
DOI: https://doi.org/10.7868/S0044466916080159
(Mi zvmmf10451)
 

This article is cited in 9 scientific papers (total in 9 papers)

On the equivalence of the electromagnetic problem of diffraction by an inhomogeneous bounded dielectric body to a volume singular integro-differential equation

Yu. G. Smirnov

Penza State University, Penza, Russia
Full-text PDF (170 kB) Citations (9)
References:
Abstract: The paper is concerned with the smoothness of the solutions to the volume singular integrodifferential equations for the electric field to which the problem of electromagnetic-wave diffraction by a local inhomogeneous bounded dielectric body is reduced. The basic tool of the study is the method of pseudo-differential operators in Sobolev spaces. The theory of elliptic boundary problems and field-matching problems is also applied. It is proven that, for smooth data of the problem, the solution from the space of square-summable functions is continuous up to the boundaries and smooth inside and outside of the body. The results on the smoothness of the solutions to the volume singular integro-differential equation for the electric field make it possible to resolve the issues on the equivalence of the boundary value problem and the equation.
Key words: electromagnetic diffraction problem, volume singular integral equation, smoothness of solution, theorem of equivalence.
Funding agency Grant number
Russian Science Foundation 14-11-00344
Received: 06.07.2015
Revised: 21.12.2015
English version:
Computational Mathematics and Mathematical Physics, 2016, Volume 56, Issue 9, Pages 1631–1640
DOI: https://doi.org/10.1134/S0965542516080145
Bibliographic databases:
Document Type: Article
UDC: 519.634
Language: Russian
Citation: Yu. G. Smirnov, “On the equivalence of the electromagnetic problem of diffraction by an inhomogeneous bounded dielectric body to a volume singular integro-differential equation”, Zh. Vychisl. Mat. Mat. Fiz., 56:9 (2016), 1657–1666; Comput. Math. Math. Phys., 56:9 (2016), 1631–1640
Citation in format AMSBIB
\Bibitem{Smi16}
\by Yu.~G.~Smirnov
\paper On the equivalence of the electromagnetic problem of diffraction by an inhomogeneous bounded dielectric body to a volume singular integro-differential equation
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2016
\vol 56
\issue 9
\pages 1657--1666
\mathnet{http://mi.mathnet.ru/zvmmf10451}
\crossref{https://doi.org/10.7868/S0044466916080159}
\elib{https://elibrary.ru/item.asp?id=26498090}
\transl
\jour Comput. Math. Math. Phys.
\yr 2016
\vol 56
\issue 9
\pages 1631--1640
\crossref{https://doi.org/10.1134/S0965542516080145}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000385164100012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84989967622}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10451
  • https://www.mathnet.ru/eng/zvmmf/v56/i9/p1657
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:294
    Full-text PDF :55
    References:65
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024