Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2016, Volume 56, Number 6, Pages 1093–1103
DOI: https://doi.org/10.7868/S0044466916060065
(Mi zvmmf10402)
 

This article is cited in 1 scientific paper (total in 1 paper)

On the short-wave nature of Richtmyer–Meshkov instability

M. S. Belotserkovskaya, O. M. Belotserkovskii, V. V. Denisenko, I. V. Eriklintsev, S. A. Kozlov, E. I. Oparina, O. V. Troshkin

Institute for Computer Aided Design of RAS, Moscow
References:
Abstract: In the case of a variable period (wavelength) of a perturbed interface, the instability and stability of Richtmyer–Meshkov vortices in perfect gas and incompressible perfect fluid, respectively, are investigated numerically and analytically. Taking into account available experiments, the instability of the interface between the argon and xenon in the case of a relatively small period is modeled. An estimate of the magnitude of the critical period is given. The nonlinear (for arbitrary initial conditions) stability of the corresponding steady-state vortex flow of perfect fluid in a strip (vertical periodic channel) in the case of a fairly large period is shown.
Key words: Richtmyer–Meshkov instability, perturbation period, stability condition for the vortex strip in perfect fluid.
Funding agency Grant number
Russian Science Foundation 14-11-00719
Received: 09.11.2015
English version:
Computational Mathematics and Mathematical Physics, 2016, Volume 56, Issue 6, Pages 1075–1085
DOI: https://doi.org/10.1134/S0965542516060063
Bibliographic databases:
Document Type: Article
UDC: 519.634
Language: Russian
Citation: M. S. Belotserkovskaya, O. M. Belotserkovskii, V. V. Denisenko, I. V. Eriklintsev, S. A. Kozlov, E. I. Oparina, O. V. Troshkin, “On the short-wave nature of Richtmyer–Meshkov instability”, Zh. Vychisl. Mat. Mat. Fiz., 56:6 (2016), 1093–1103; Comput. Math. Math. Phys., 56:6 (2016), 1075–1085
Citation in format AMSBIB
\Bibitem{BelBelDen16}
\by M.~S.~Belotserkovskaya, O.~M.~Belotserkovskii, V.~V.~Denisenko, I.~V.~Eriklintsev, S.~A.~Kozlov, E.~I.~Oparina, O.~V.~Troshkin
\paper On the short-wave nature of Richtmyer--Meshkov instability
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2016
\vol 56
\issue 6
\pages 1093--1103
\mathnet{http://mi.mathnet.ru/zvmmf10402}
\crossref{https://doi.org/10.7868/S0044466916060065}
\elib{https://elibrary.ru/item.asp?id=26068784}
\transl
\jour Comput. Math. Math. Phys.
\yr 2016
\vol 56
\issue 6
\pages 1075--1085
\crossref{https://doi.org/10.1134/S0965542516060063}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000378740000014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84976354718}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10402
  • https://www.mathnet.ru/eng/zvmmf/v56/i6/p1093
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:379
    Full-text PDF :64
    References:72
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024