Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2016, Volume 56, Number 6, Pages 989–998
DOI: https://doi.org/10.7868/S0044466916060247
(Mi zvmmf10401)
 

This article is cited in 6 scientific papers (total in 6 papers)

Solving the problem of non-stationary filtration of substance by the discontinuous Galerkin method on unstructured grids

R. V. Zhalnina, M. E. Ladonkinab, V. F. Masyagina, V. F. Tishkinb

a Mordovia State University, ul. Bol'shevistskaya 68, Saransk, 430005, Russia
b Institute of Applied Mathematics, Russian Academy of Sciences, Miusskaya pl. 4, Moscow, 125047, Russia
References:
Abstract: A numerical algorithm is proposed for solving the problem of non-stationary filtration of substance in anisotropic media by the Galerkin method with discontinuous basis functions on unstructured triangular grids. A characteristic feature of this method is that the flux variables are considered on the dual grid. The dual grid comprises median control volumes around the nodes of the original triangular grid. The flux values of the quantities on the boundary of an element are calculated with the help of stabilizing additions. For averaging the permeability tensor over the cells of the dual grid, the method of support operators is applied. The method is studied on the example of a two-dimensional boundary value problem. The convergence and approximation of the numerical method are analyzed, and results of mathematical modeling are presented. The numerical results demonstrate the applicability of this approach for solving problems of non-stationary filtration of substance in anisotropic media by the discontinuous Galerkin method on unstructured triangular grids.
Key words: non-stationary filtration, parabolic equations, staggered grids, discontinuous Galerkin method.
Received: 09.11.2015
English version:
Computational Mathematics and Mathematical Physics, 2016, Volume 56, Issue 6, Pages 977–986
DOI: https://doi.org/10.1134/S0965542516060245
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: R. V. Zhalnin, M. E. Ladonkina, V. F. Masyagin, V. F. Tishkin, “Solving the problem of non-stationary filtration of substance by the discontinuous Galerkin method on unstructured grids”, Zh. Vychisl. Mat. Mat. Fiz., 56:6 (2016), 989–998; Comput. Math. Math. Phys., 56:6 (2016), 977–986
Citation in format AMSBIB
\Bibitem{ZhaLadMas16}
\by R.~V.~Zhalnin, M.~E.~Ladonkina, V.~F.~Masyagin, V.~F.~Tishkin
\paper Solving the problem of non-stationary filtration of substance by the discontinuous Galerkin method on unstructured grids
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2016
\vol 56
\issue 6
\pages 989--998
\mathnet{http://mi.mathnet.ru/zvmmf10401}
\crossref{https://doi.org/10.7868/S0044466916060247}
\elib{https://elibrary.ru/item.asp?id=26068776}
\transl
\jour Comput. Math. Math. Phys.
\yr 2016
\vol 56
\issue 6
\pages 977--986
\crossref{https://doi.org/10.1134/S0965542516060245}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000378740000006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84976412265}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10401
  • https://www.mathnet.ru/eng/zvmmf/v56/i6/p989
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:376
    Full-text PDF :120
    References:65
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024