Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2016, Volume 56, Number 6, Pages 973–988
DOI: https://doi.org/10.7868/S004446691606003X
(Mi zvmmf10399)
 

This article is cited in 15 scientific papers (total in 15 papers)

Optimal monotonization of a high-order accurate bicompact scheme for the nonstationary multidimensional transport equation

E. N. Aristovaab, B. V. Rogovab, A. V. Chikitkinb

a Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Miusskaya pl. 4, Moscow, 125047, Russia
b Moscow Institute of Physics and Technology, Institutskii per. 9, Dolgoprudnyi, Moscow oblast, 141700, Russia
References:
Abstract: A hybrid scheme is proposed for solving the nonstationary inhomogeneous transport equation. The hybridization procedure is based on two baseline schemes: (1) a bicompact one that is fourth-order accurate in all space variables and third-order accurate in time and (2) a monotone first-order accurate scheme from the family of short characteristic methods with interpolation over illuminated faces. It is shown that the first-order accurate scheme has minimal dissipation, so it is called optimal. The solution of the hybrid scheme depends locally on the solutions of the baseline schemes at each node of the space-time grid. A monotonization procedure is constructed continuously and uniformly in all mesh cells so as to keep fourth-order accuracy in space and third-order accuracy in time in domains where the solution is smooth, while maintaining a high level of accuracy in domains of discontinuous solution. Due to its logical simplicity and uniformity, the algorithm is well suited for supercomputer simulation.
Key words: transport equation, bicompact schemes, short characteristic method, monotone schemes, minimal dissipation, hybrid schemes.
Received: 09.11.2015
English version:
Computational Mathematics and Mathematical Physics, 2016, Volume 56, Issue 6, Pages 962–976
DOI: https://doi.org/10.1134/S0965542516060038
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: E. N. Aristova, B. V. Rogov, A. V. Chikitkin, “Optimal monotonization of a high-order accurate bicompact scheme for the nonstationary multidimensional transport equation”, Zh. Vychisl. Mat. Mat. Fiz., 56:6 (2016), 973–988; Comput. Math. Math. Phys., 56:6 (2016), 962–976
Citation in format AMSBIB
\Bibitem{AriRogChi16}
\by E.~N.~Aristova, B.~V.~Rogov, A.~V.~Chikitkin
\paper Optimal monotonization of a high-order accurate bicompact scheme for the nonstationary multidimensional transport equation
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2016
\vol 56
\issue 6
\pages 973--988
\mathnet{http://mi.mathnet.ru/zvmmf10399}
\crossref{https://doi.org/10.7868/S004446691606003X}
\elib{https://elibrary.ru/item.asp?id=26068775}
\transl
\jour Comput. Math. Math. Phys.
\yr 2016
\vol 56
\issue 6
\pages 962--976
\crossref{https://doi.org/10.1134/S0965542516060038}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000378740000005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84976447848}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10399
  • https://www.mathnet.ru/eng/zvmmf/v56/i6/p973
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:295
    Full-text PDF :69
    References:55
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024