Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2016, Volume 56, Number 5, Pages 756–767
DOI: https://doi.org/10.7868/S0044466916050082
(Mi zvmmf10385)
 

This article is cited in 5 scientific papers (total in 5 papers)

Efficiency of the estimate refinement method for polyhedral approximation of multidimensional balls

G. K. Kamenev

Dorodnicyn Computing Center, Federal Research Center “Computer Science and Control”, Russian Academy of Sciences, ul. Vavilova 40, Moscow, 119333, Russia
Full-text PDF (195 kB) Citations (5)
References:
Abstract: The estimate refinement method for the polyhedral approximation of convex compact bodies is analyzed. When applied to convex bodies with a smooth boundary, this method is known to generate polytopes with an optimal order of growth of the number of vertices and facets depending on the approximation error. In previous studies, for the approximation of a multidimensional ball, the convergence rates of the method were estimated in terms of the number of faces of all dimensions and the cardinality of the facial structure (the norm of the $f$-vector) of the constructed polytope was shown to have an optimal rate of growth. In this paper, the asymptotic convergence rate of the method with respect to faces of all dimensions is compared with the convergence rate of best approximation polytopes. Explicit expressions are obtained for the asymptotic efficiency, including the case of low dimensions. Theoretical estimates are compared with numerical results.
Key words: convex bodies, multidimensional ball, polyhedral approximation, optimal method, facial structure, convergence rate estimate of algorithms.
Funding agency Grant number
Russian Science Foundation 14-11-00432
Received: 06.06.2015
Revised: 20.07.2015
English version:
Computational Mathematics and Mathematical Physics, 2016, Volume 56, Issue 5, Pages 744–755
DOI: https://doi.org/10.1134/S0965542516050080
Bibliographic databases:
Document Type: Article
UDC: 519.65
Language: Russian
Citation: G. K. Kamenev, “Efficiency of the estimate refinement method for polyhedral approximation of multidimensional balls”, Zh. Vychisl. Mat. Mat. Fiz., 56:5 (2016), 756–767; Comput. Math. Math. Phys., 56:5 (2016), 744–755
Citation in format AMSBIB
\Bibitem{Kam16}
\by G.~K.~Kamenev
\paper Efficiency of the estimate refinement method for polyhedral approximation of multidimensional balls
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2016
\vol 56
\issue 5
\pages 756--767
\mathnet{http://mi.mathnet.ru/zvmmf10385}
\crossref{https://doi.org/10.7868/S0044466916050082}
\elib{https://elibrary.ru/item.asp?id=26068757}
\transl
\jour Comput. Math. Math. Phys.
\yr 2016
\vol 56
\issue 5
\pages 744--755
\crossref{https://doi.org/10.1134/S0965542516050080}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000377419200004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84974605283}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10385
  • https://www.mathnet.ru/eng/zvmmf/v56/i5/p756
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:260
    Full-text PDF :37
    References:51
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024