Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2016, Volume 56, Number 5, Pages 777–795
DOI: https://doi.org/10.7868/S0044466916050197
(Mi zvmmf10382)
 

This article is cited in 1 scientific paper (total in 1 paper)

Implementation and efficiency analysis of an adaptive $hp$-finite element method for solving boundary value problems for the stationary reaction-diffusion equation

N. D. Zolotareva, E. S. Nikolaev

Faculty of Computational Mathematics and Cybernetics, Moscow State University, Moscow, 119992, Russia
Full-text PDF (334 kB) Citations (1)
References:
Abstract: An iterative process implementing an adaptive $hp$-version of the finite element method (FEM) previously proposed by the authors for the approximate solution of boundary value problems for the stationary reaction-diffusion equation is described. The method relies on piecewise polynomial basis functions and makes use of an adaptive strategy for constructing a sequence of finite-dimensional subspaces based on the computation of correction indicators. Singularly perturbed boundary value test problems with smooth and not very smooth solutions are used to analyze the efficiency of the method in the situation when an approximate solution has to be found with high accuracy. The convergence of the approximate solution to the exact one is investigated depending on the value of the small parameter multiplying the highest derivative, on the family of basis functions and the quadrature formulas used, and on the internal parameters of the method. The method is compared with an adaptive h-version of FEM that also relies on correction indicators and with its nonadaptive variant based on the bisection of grid intervals.
Key words: singularly perturbed boundary value problems, stationary one-dimensional reaction–diffusion equations, adaptive methods, correction indicators, hp-version of the finite element method.
Received: 01.06.2015
English version:
Computational Mathematics and Mathematical Physics, 2016, Volume 56, Issue 5, Pages 764–782
DOI: https://doi.org/10.1134/S0965542516050195
Bibliographic databases:
Document Type: Article
UDC: 519.632
Language: Russian
Citation: N. D. Zolotareva, E. S. Nikolaev, “Implementation and efficiency analysis of an adaptive $hp$-finite element method for solving boundary value problems for the stationary reaction-diffusion equation”, Zh. Vychisl. Mat. Mat. Fiz., 56:5 (2016), 777–795; Comput. Math. Math. Phys., 56:5 (2016), 764–782
Citation in format AMSBIB
\Bibitem{ZolNik16}
\by N.~D.~Zolotareva, E.~S.~Nikolaev
\paper Implementation and efficiency analysis of an adaptive $hp$-finite element method for solving boundary value problems for the stationary reaction-diffusion equation
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2016
\vol 56
\issue 5
\pages 777--795
\mathnet{http://mi.mathnet.ru/zvmmf10382}
\crossref{https://doi.org/10.7868/S0044466916050197}
\elib{https://elibrary.ru/item.asp?id=26068759}
\transl
\jour Comput. Math. Math. Phys.
\yr 2016
\vol 56
\issue 5
\pages 764--782
\crossref{https://doi.org/10.1134/S0965542516050195}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000377419200006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84974588154}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10382
  • https://www.mathnet.ru/eng/zvmmf/v56/i5/p777
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024