Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2016, Volume 56, Number 2, Pages 283–300
DOI: https://doi.org/10.7868/S0044466916020174
(Mi zvmmf10345)
 

This article is cited in 3 scientific papers (total in 3 papers)

Geometric and algebraic multigrid techniques for fluid dynamics problems on unstructured grids

K. N. Volkov, V. N. Emel'yanov, I. V. Teterina

St. Petersburg Baltic Technical University, 1-ya Krasnoarmeiskaya ul. 1, St. Petersburg, 190005, Russia
References:
Abstract: Issues concerning the implementation and practical application of geometric and algebraic multigrid techniques for solving systems of difference equations generated by the finite volume discretization of the Euler and Navier–Stokes equations on unstructured grids are studied. The construction of prolongation and interpolation operators, as well as grid levels of various resolutions, is discussed. The results of the application of geometric and algebraic multigrid techniques for the simulation of inviscid and viscous compressible fluid flows over an airfoil are compared. Numerical results show that geometric methods ensure faster convergence and weakly depend on the method parameters, while the efficiency of algebraic methods considerably depends on the input parameters.
Key words: multigrid method, unstructured grid, smoothing, interpolation, fluid dynamics.
Funding agency Grant number
Russian Foundation for Basic Research 13-07-12079_офи_м
Received: 26.06.2014
English version:
Computational Mathematics and Mathematical Physics, 2016, Volume 56, Issue 2, Pages 286–302
DOI: https://doi.org/10.1134/S0965542516020159
Bibliographic databases:
Document Type: Article
UDC: 519.634
Language: Russian
Citation: K. N. Volkov, V. N. Emel'yanov, I. V. Teterina, “Geometric and algebraic multigrid techniques for fluid dynamics problems on unstructured grids”, Zh. Vychisl. Mat. Mat. Fiz., 56:2 (2016), 283–300; Comput. Math. Math. Phys., 56:2 (2016), 286–302
Citation in format AMSBIB
\Bibitem{VolEmeTet16}
\by K.~N.~Volkov, V.~N.~Emel'yanov, I.~V.~Teterina
\paper Geometric and algebraic multigrid techniques for fluid dynamics problems on unstructured grids
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2016
\vol 56
\issue 2
\pages 283--300
\mathnet{http://mi.mathnet.ru/zvmmf10345}
\crossref{https://doi.org/10.7868/S0044466916020174}
\elib{https://elibrary.ru/item.asp?id=25343617}
\transl
\jour Comput. Math. Math. Phys.
\yr 2016
\vol 56
\issue 2
\pages 286--302
\crossref{https://doi.org/10.1134/S0965542516020159}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000373669000011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84962713217}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10345
  • https://www.mathnet.ru/eng/zvmmf/v56/i2/p283
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024