Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2016, Volume 56, Number 2, Pages 239–251
DOI: https://doi.org/10.7868/S0044466916020149
(Mi zvmmf10341)
 

This article is cited in 16 scientific papers (total in 16 papers)

Behavior of the formal solution to a mixed problem for the wave equation

A. P. Khromov

Saratov State University, ul. Astrakhanskaya 83, Saratov, 410012, Russia
References:
Abstract: The behavior of the formal solution, obtained by the Fourier method, to a mixed problem for the wave equation with arbitrary two-point boundary conditions and the initial condition $\varphi(x)$ (for zero initial velocity) with weaker requirements than those for the classical solution is analyzed. An approach based on the Cauchy–Poincare technique, consisting in the contour integration of the resolvent of the operator generated by the corresponding spectral problem, is used. Conditions giving the solution to the mixed problem when the wave equation is satisfied only almost everywhere are found. When $\varphi(x)$ is an arbitrary function from $L_2[0, 1]$, the formal solution converges almost everywhere and is a generalized solution to the mixed problem.
Key words: mixed problem, wave equation, Fourier method, resolvent.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 1.1520.2014К
Received: 25.05.2015
English version:
Computational Mathematics and Mathematical Physics, 2016, Volume 56, Issue 2, Pages 243–255
DOI: https://doi.org/10.1134/S0965542516020135
Bibliographic databases:
Document Type: Article
UDC: 519.633
Language: Russian
Citation: A. P. Khromov, “Behavior of the formal solution to a mixed problem for the wave equation”, Zh. Vychisl. Mat. Mat. Fiz., 56:2 (2016), 239–251; Comput. Math. Math. Phys., 56:2 (2016), 243–255
Citation in format AMSBIB
\Bibitem{Khr16}
\by A.~P.~Khromov
\paper Behavior of the formal solution to a mixed problem for the wave equation
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2016
\vol 56
\issue 2
\pages 239--251
\mathnet{http://mi.mathnet.ru/zvmmf10341}
\crossref{https://doi.org/10.7868/S0044466916020149}
\elib{https://elibrary.ru/item.asp?id=25343613}
\transl
\jour Comput. Math. Math. Phys.
\yr 2016
\vol 56
\issue 2
\pages 243--255
\crossref{https://doi.org/10.1134/S0965542516020135}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000373669000007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84962635449}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10341
  • https://www.mathnet.ru/eng/zvmmf/v56/i2/p239
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:478
    Full-text PDF :81
    References:87
    First page:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024