Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2016, Volume 56, Number 1, Pages 167–179
DOI: https://doi.org/10.7868/S0044466916010129
(Mi zvmmf10333)
 

Category-theoretic models of algebraic computer systems

S. P. Kovalyov

Institute of Control Sciences, Russian Academy of Sciences, ul. Profsoyuznaya 65, Moscow, 17997, Russia
References:
Abstract: A computer system is said to be algebraic if it contains nodes that implement unconventional computation paradigms based on universal algebra. A category-based approach to modeling such systems that provides a theoretical basis for mapping tasks to these systems’ architecture is proposed. The construction of algebraic models of general-purpose computations involving conditional statements and overflow control is formally described by a reflector in an appropriate category of algebras. It is proved that this reflector takes the modulo ring whose operations are implemented in the conventional arithmetic processors to the Łukasiewicz logic matrix. Enrichments of the set of ring operations that form bases in the Łukasiewicz logic matrix are found.
Key words: algebraic computer system, semiprimal algebra, structural category of algebras, modular arithmetic.
Received: 12.04.2014
English version:
Computational Mathematics and Mathematical Physics, 2016, Volume 56, Issue 1, Pages 173–184
DOI: https://doi.org/10.1134/S0965542516010115
Bibliographic databases:
Document Type: Article
UDC: 519.7
Language: Russian
Citation: S. P. Kovalyov, “Category-theoretic models of algebraic computer systems”, Zh. Vychisl. Mat. Mat. Fiz., 56:1 (2016), 167–179; Comput. Math. Math. Phys., 56:1 (2016), 173–184
Citation in format AMSBIB
\Bibitem{Kov16}
\by S.~P.~Kovalyov
\paper Category-theoretic models of algebraic computer systems
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2016
\vol 56
\issue 1
\pages 167--179
\mathnet{http://mi.mathnet.ru/zvmmf10333}
\crossref{https://doi.org/10.7868/S0044466916010129}
\elib{https://elibrary.ru/item.asp?id=25343605}
\transl
\jour Comput. Math. Math. Phys.
\yr 2016
\vol 56
\issue 1
\pages 173--184
\crossref{https://doi.org/10.1134/S0965542516010115}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000373076900012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84961575644}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10333
  • https://www.mathnet.ru/eng/zvmmf/v56/i1/p167
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:210
    Full-text PDF :43
    References:84
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024