Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2016, Volume 56, Number 1, Pages 3–15
DOI: https://doi.org/10.7868/S0044466916010130
(Mi zvmmf10322)
 

This article is cited in 4 scientific papers (total in 4 papers)

Locally extra-optimal regularizing algorithms and a posteriori estimates of the accuracy for ill-posed problems with discontinuous solutions

A. S. Leonov

National Nuclear Research University MEPhI, Moscow Engineering Physics Institute, Kashirskoe sh. 31, Moscow, 115409, Russia
Full-text PDF (735 kB) Citations (4)
References:
Abstract: Local a posteriori estimates of the accuracy of approximate solutions to ill-posed inverse problems with discontinuous solutions from the classes of functions of several variables with bounded variations of the Hardy or Giusti type are studied. Unlike global estimates (in the norm), local estimates of accuracy are carried out using certain linear estimation functionals (e.g., using the mean value of the solution on a given fragment of its support). The concept of a locally extra-optimal regularizing algorithm for solving ill-posed inverse problems, which has an optimal in order local a posteriori estimate, was introduced. A method for calculating local a posteriori estimates of accuracy with the use of some distinguished classes of linear functionals for the problems with discontinuous solutions is proposed. For linear inverse problems, the method is bases on solving specialized convex optimization problems. Examples of locally extra-optimal regularizing algorithms and results of numerical experiments on a posteriori estimation of the accuracy of solutions for different linear estimation functionals are presented.
Key words: ill-posed problems, discontinuous solutions, local a posteriori estimate of accuracy, locally extra-optimal regularizing algorithm.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00182_a
14-01-91151-ГФЕН-а
Received: 28.04.2015
English version:
Computational Mathematics and Mathematical Physics, 2016, Volume 56, Issue 1, Pages 1–13
DOI: https://doi.org/10.1134/S0965542516010127
Bibliographic databases:
Document Type: Article
UDC: 519.642.8
Language: Russian
Citation: A. S. Leonov, “Locally extra-optimal regularizing algorithms and a posteriori estimates of the accuracy for ill-posed problems with discontinuous solutions”, Zh. Vychisl. Mat. Mat. Fiz., 56:1 (2016), 3–15; Comput. Math. Math. Phys., 56:1 (2016), 1–13
Citation in format AMSBIB
\Bibitem{Leo16}
\by A.~S.~Leonov
\paper Locally extra-optimal regularizing algorithms and a posteriori estimates of the accuracy for ill-posed problems with discontinuous solutions
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2016
\vol 56
\issue 1
\pages 3--15
\mathnet{http://mi.mathnet.ru/zvmmf10322}
\crossref{https://doi.org/10.7868/S0044466916010130}
\elib{https://elibrary.ru/item.asp?id=25343594}
\transl
\jour Comput. Math. Math. Phys.
\yr 2016
\vol 56
\issue 1
\pages 1--13
\crossref{https://doi.org/10.1134/S0965542516010127}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000373076900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84961659493}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10322
  • https://www.mathnet.ru/eng/zvmmf/v56/i1/p3
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:408
    Full-text PDF :71
    References:98
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024