Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2015, Volume 55, Number 11, Pages 1812–1826
DOI: https://doi.org/10.7868/S0044466915110095
(Mi zvmmf10293)
 

This article is cited in 3 scientific papers (total in 3 papers)

Boundary value problem of Pontryagin's maximum principle in a two-sector economy model with an integral utility function

Yu. N. Kiselev, M. V. Orlov, S. M. Orlov

Faculty of Computational Mathematics and Cybernetics, Moscow State University, Moscow, 119991, Russia
Full-text PDF (147 kB) Citations (3)
References:
Abstract: An infinite-horizon two-sector economy model with a Cobb–Douglas production function and a utility function that is an integral functional with discounting and a logarithmic integrand is investigated. The application of Pontryagin's maximum principle yields a boundary value problem with special conditions at infinity. The search for the solution of the maximum-principle boundary value problem is complicated by singular modes in its optimal solution. In the construction of the solution to the problem, they are described in analytical form. Additionally, a special version of the sweep method in continuous form is proposed, which is of interest from theoretical and computational points of view. An important result is the proof of the optimality of the extremal solution obtained by applying the maximum-principle boundary value problem.
Key words: two-sector economy model, Cobb–Douglas production function, optimal control, maximum principle, infinite time horizon.
Received: 26.01.2015
Revised: 25.03.2015
English version:
Computational Mathematics and Mathematical Physics, 2015, Volume 55, Issue 11, Pages 1779–1793
DOI: https://doi.org/10.1134/S0965542515110093
Bibliographic databases:
Document Type: Article
UDC: 519.626
MSC: Primary 49N90; Secondary 34B16, 49K15, 91B66
Language: Russian
Citation: Yu. N. Kiselev, M. V. Orlov, S. M. Orlov, “Boundary value problem of Pontryagin's maximum principle in a two-sector economy model with an integral utility function”, Zh. Vychisl. Mat. Mat. Fiz., 55:11 (2015), 1812–1826; Comput. Math. Math. Phys., 55:11 (2015), 1779–1793
Citation in format AMSBIB
\Bibitem{KisOrlOrl15}
\by Yu.~N.~Kiselev, M.~V.~Orlov, S.~M.~Orlov
\paper Boundary value problem of Pontryagin's maximum principle in a two-sector economy model with an integral utility function
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2015
\vol 55
\issue 11
\pages 1812--1826
\mathnet{http://mi.mathnet.ru/zvmmf10293}
\crossref{https://doi.org/10.7868/S0044466915110095}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3423044}
\elib{https://elibrary.ru/item.asp?id=24730737}
\transl
\jour Comput. Math. Math. Phys.
\yr 2015
\vol 55
\issue 11
\pages 1779--1793
\crossref{https://doi.org/10.1134/S0965542515110093}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000365036400002}
\elib{https://elibrary.ru/item.asp?id=24971155}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84947233935}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10293
  • https://www.mathnet.ru/eng/zvmmf/v55/i11/p1812
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:298
    Full-text PDF :79
    References:92
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024