Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2015, Volume 55, Number 10, Pages 1661–1669
DOI: https://doi.org/10.7868/S0044466915100130
(Mi zvmmf10280)
 

This article is cited in 2 scientific papers (total in 2 papers)

The Dines theorem and some other properties of quadratic mappings

D. Yu. Karamzin

Dorodnicyn Computing Center, Russian Academy of Sciences, ul. Vavilova 40, Moscow, 119991, Russia
Full-text PDF (125 kB) Citations (2)
References:
Abstract: Real homogeneous quadratic mappings from $\mathbb{R}^n$ to $\mathbb{R}^2$ are examined. It is known that the image of such a mapping is always convex. A proof of the convexity of the image based on the quadratic extremum principle is given. The following fact is noted: If the quadratic mapping $Q$ is surjective and $n>2+\mathrm{dim\,ker\,}Q$, then there exists a regular zero of $Q$. A certain criterion of the linear dependence of quadratic forms is also stated.
Key words: quadratic forms and mappings, convexity of image, regular zeros.
Received: 13.01.2015
English version:
Computational Mathematics and Mathematical Physics, 2015, Volume 55, Issue 10, Pages 1633–1641
DOI: https://doi.org/10.1134/S0965542515100127
Bibliographic databases:
Document Type: Article
UDC: 519.626
Language: Russian
Citation: D. Yu. Karamzin, “The Dines theorem and some other properties of quadratic mappings”, Zh. Vychisl. Mat. Mat. Fiz., 55:10 (2015), 1661–1669; Comput. Math. Math. Phys., 55:10 (2015), 1633–1641
Citation in format AMSBIB
\Bibitem{Kar15}
\by D.~Yu.~Karamzin
\paper The Dines theorem and some other properties of quadratic mappings
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2015
\vol 55
\issue 10
\pages 1661--1669
\mathnet{http://mi.mathnet.ru/zvmmf10280}
\crossref{https://doi.org/10.7868/S0044466915100130}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3412530}
\zmath{https://zbmath.org/?q=an:1333.15009}
\elib{https://elibrary.ru/item.asp?id=24149956}
\transl
\jour Comput. Math. Math. Phys.
\yr 2015
\vol 55
\issue 10
\pages 1633--1641
\crossref{https://doi.org/10.1134/S0965542515100127}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000363056200004}
\elib{https://elibrary.ru/item.asp?id=24961697}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84944446820}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10280
  • https://www.mathnet.ru/eng/zvmmf/v55/i10/p1661
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025