Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2015, Volume 55, Number 10, Pages 1647–1660
DOI: https://doi.org/10.7868/S0044466915100129
(Mi zvmmf10279)
 

This article is cited in 2 scientific papers (total in 2 papers)

Asymptotic properties of the estimate refinement method in polyhedral approximation of multidimensional balls

G. K. Kamenev

Dorodnicyn Computing Center, Russian Academy of Sciences, ul. Vavilova 40, Moscow, 119333, Russia
Full-text PDF (374 kB) Citations (2)
References:
Abstract: The estimate refinement method for the polyhedral approximation of convex compact bodies is considered. In the approximation of convex bodies with a smooth boundary, this method is known to generate polytopes with an optimal order of growth of the number of vertices and facets depending on the approximation error. The properties of the method are examined as applied to the polyhedral approximation of a multidimensional ball. As vertices of approximating polytopes, the method is shown to generate a deep holes sequence on the surface of the ball. As a result, previously obtained combinatorial properties of convex hulls of the indicated sequences, namely, the convergence rates with respect to the number of faces of all dimensions and the optimal growth of the cardinality of the facial structure (of the norm of the $f$-vector) can be extended to such polytopes. The combinatorial properties of the approximating polytopes generated by the estimate refinement method are compared to the properties of polytopes with a facial structure of extremal cardinality. It is shown that the polytopes generated by the method are similar to stacked polytopes, on which the minimum number of faces of all dimensions is attained for a given number of vertices.
Key words: convex bodies, multidimensional ball, polyhedral approximation, estimate refinement method, vertices, facets, faces, facial structure, $f$-vector, convergence rate.
Received: 18.12.2014
Revised: 27.01.2015
English version:
Computational Mathematics and Mathematical Physics, 2015, Volume 55, Issue 10, Pages 1619–1632
DOI: https://doi.org/10.1134/S0965542515100115
Bibliographic databases:
Document Type: Article
UDC: 519.626
Language: Russian
Citation: G. K. Kamenev, “Asymptotic properties of the estimate refinement method in polyhedral approximation of multidimensional balls”, Zh. Vychisl. Mat. Mat. Fiz., 55:10 (2015), 1647–1660; Comput. Math. Math. Phys., 55:10 (2015), 1619–1632
Citation in format AMSBIB
\Bibitem{Kam15}
\by G.~K.~Kamenev
\paper Asymptotic properties of the estimate refinement method in polyhedral approximation of multidimensional balls
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2015
\vol 55
\issue 10
\pages 1647--1660
\mathnet{http://mi.mathnet.ru/zvmmf10279}
\crossref{https://doi.org/10.7868/S0044466915100129}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3412529}
\elib{https://elibrary.ru/item.asp?id=24149955}
\transl
\jour Comput. Math. Math. Phys.
\yr 2015
\vol 55
\issue 10
\pages 1619--1632
\crossref{https://doi.org/10.1134/S0965542515100115}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000363056200003}
\elib{https://elibrary.ru/item.asp?id=24961782}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84944453074}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10279
  • https://www.mathnet.ru/eng/zvmmf/v55/i10/p1647
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025