Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2015, Volume 55, Number 8, Pages 1363–1379
DOI: https://doi.org/10.7868/S0044466915080086
(Mi zvmmf10251)
 

This article is cited in 3 scientific papers (total in 3 papers)

Numerical simulation of three-dimensional quasi-neutral gas flows based on smoothed magnetohydrodynamic equations

T. G. Elizarovaa, M. V. Popovb

a Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Miusskaya pl. 4, Moscow, 125047, Russia
b École Normale Supérieure de Lyon, CRAL (UMR CNRS 5574), Université de Lyon 1, 46 allée d'Italie 69007 Lyon, France
References:
Abstract: A new finite-difference method for the numerical simulation of compressible MHD flows is presented, which is applicable to a broad class of problems. The method relies on the magnetic quasi-gasdynamic equations (referred to as quasi-MHD (QMHD) equations), which are, in fact, the system of Navier–Stokes equations and Faraday’s laws averaged over a short time interval. The QMHD equations are discretized on a grid with the help of central differences. The averaging procedure makes it possible to stabilize the numerical solution and to avoid additional limiting procedures (flux limiters, etc.). The magnetic field is ensured to be free of divergence by applying Stokes’ theorem. Numerical results are presented for 3D test problems: a central blast in a magnetic field, the interaction of a shock wave with a cloud, and the three-dimensional Orszag–Tang vortex. Additionally, preliminary numerical results for a magnetic pinch in plasma are demonstrated.
Key words: magnetic quasi-gas dynamics, QMHD, MHD flows, finite-difference algorithm, central-difference approximation.
Received: 26.01.2015
English version:
Computational Mathematics and Mathematical Physics, 2015, Volume 55, Issue 8, Pages 1330–1345
DOI: https://doi.org/10.1134/S0965542515080084
Bibliographic databases:
Document Type: Article
UDC: 519.634
Language: Russian
Citation: T. G. Elizarova, M. V. Popov, “Numerical simulation of three-dimensional quasi-neutral gas flows based on smoothed magnetohydrodynamic equations”, Zh. Vychisl. Mat. Mat. Fiz., 55:8 (2015), 1363–1379; Comput. Math. Math. Phys., 55:8 (2015), 1330–1345
Citation in format AMSBIB
\Bibitem{EliPop15}
\by T.~G.~Elizarova, M.~V.~Popov
\paper Numerical simulation of three-dimensional quasi-neutral gas flows based on smoothed magnetohydrodynamic equations
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2015
\vol 55
\issue 8
\pages 1363--1379
\mathnet{http://mi.mathnet.ru/zvmmf10251}
\crossref{https://doi.org/10.7868/S0044466915080086}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3386164}
\elib{https://elibrary.ru/item.asp?id=23908474}
\transl
\jour Comput. Math. Math. Phys.
\yr 2015
\vol 55
\issue 8
\pages 1330--1345
\crossref{https://doi.org/10.1134/S0965542515080084}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000360069100009}
\elib{https://elibrary.ru/item.asp?id=24942494}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84940204211}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10251
  • https://www.mathnet.ru/eng/zvmmf/v55/i8/p1363
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:203
    Full-text PDF :59
    References:60
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024