Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2015, Volume 55, Number 8, Pages 1356–1362
DOI: https://doi.org/10.7868/S0044466915080141
(Mi zvmmf10250)
 

This article is cited in 8 scientific papers (total in 8 papers)

Method of adaptive artificial viscosity for solving the Navier–Stokes equations

I. V. Popovab, I. V. Fryazinova

a Institute of Applied Mathematics, Russian Academy of Sciences, Miusskaya pl. 4, Moscow, 125047, Russia
b National Research Nuclear University MEPhI, Kashirskoe shosse 31, Moscow, 115409, Russia
Full-text PDF (936 kB) Citations (8)
References:
Abstract: A numerical technique based on the method of adaptive artificial viscosity is proposed for solving the viscous compressible Navier–Stokes equations in two dimensions. The Navier–Stokes equations is approximated on unstructured meshes, namely, on triangular or tetrahedral elements. The monotonicity of the difference scheme according to the Friedrichs criterion is achieved by adding terms with adaptive artificial viscosity to the scheme. The adaptive artificial viscosity is determined by satisfying the maximum principle conditions. An external flow around a cylinder at various Reynolds numbers is computed as a numerical experiment.
Key words: difference scheme, Navier–Stokes equations, adaptive artificial viscosity, numerical method.
Received: 09.02.2015
English version:
Computational Mathematics and Mathematical Physics, 2015, Volume 55, Issue 8, Pages 1324–1329
DOI: https://doi.org/10.1134/S096554251508014X
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: I. V. Popov, I. V. Fryazinov, “Method of adaptive artificial viscosity for solving the Navier–Stokes equations”, Zh. Vychisl. Mat. Mat. Fiz., 55:8 (2015), 1356–1362; Comput. Math. Math. Phys., 55:8 (2015), 1324–1329
Citation in format AMSBIB
\Bibitem{PopFry15}
\by I.~V.~Popov, I.~V.~Fryazinov
\paper Method of adaptive artificial viscosity for solving the Navier--Stokes equations
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2015
\vol 55
\issue 8
\pages 1356--1362
\mathnet{http://mi.mathnet.ru/zvmmf10250}
\crossref{https://doi.org/10.7868/S0044466915080141}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3386163}
\elib{https://elibrary.ru/item.asp?id=23908473}
\transl
\jour Comput. Math. Math. Phys.
\yr 2015
\vol 55
\issue 8
\pages 1324--1329
\crossref{https://doi.org/10.1134/S096554251508014X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000360069100008}
\elib{https://elibrary.ru/item.asp?id=24942377}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84940192180}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10250
  • https://www.mathnet.ru/eng/zvmmf/v55/i8/p1356
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:281
    Full-text PDF :85
    References:56
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024