Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2015, Volume 55, Number 8, Pages 1341–1355
DOI: https://doi.org/10.7868/S0044466915080116
(Mi zvmmf10249)
 

This article is cited in 18 scientific papers (total in 18 papers)

Difference schemes based on the support operator method for fluids dynamics problems in a collector containing gas hydrates

V. A. Gasilova, I. V. Gasilovaa, L. V. Klochkovaa, Yu. A. Poveshchenkoba, V. F. Tishkina

a Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Miusskaya pl. 4, Moscow, 125047, Russia
b National Research Nuclear University MEPhI, Kashirskoe sh. 31, Moscow, 115409, Russia
References:
Abstract: Difference schemes based on the support operator method are considered as applied to fluid dynamics in underground collectors containing gas hydrate deposits. A system of mass and energy balances describing fluid dynamics in a porous medium containing gas hydrate deposits is given. A dissipative hydrate equation is derived that determines the thermodynamic evolution of the parameters of the system. It is shown that the jumps in specific volumes and internal energy occurring in phase transitions play a crucial role in the stability of the evolution of the system in the dissipation thermodynamic module of the system. A family of rotation-invariant difference schemes of the support operator method on unstructured meshes is constructed for numerical computations. The schemes are tested on a series of model problems. Their numerical solutions are presented.
Key words: numerical experiment, support operator method, unstructured meshes, fluid dynamics, porous medium, gas hydrates.
Received: 24.02.2015
English version:
Computational Mathematics and Mathematical Physics, 2015, Volume 55, Issue 8, Pages 1310–1323
DOI: https://doi.org/10.1134/S0965542515080114
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: V. A. Gasilov, I. V. Gasilova, L. V. Klochkova, Yu. A. Poveshchenko, V. F. Tishkin, “Difference schemes based on the support operator method for fluids dynamics problems in a collector containing gas hydrates”, Zh. Vychisl. Mat. Mat. Fiz., 55:8 (2015), 1341–1355; Comput. Math. Math. Phys., 55:8 (2015), 1310–1323
Citation in format AMSBIB
\Bibitem{GasGasKlo15}
\by V.~A.~Gasilov, I.~V.~Gasilova, L.~V.~Klochkova, Yu.~A.~Poveshchenko, V.~F.~Tishkin
\paper Difference schemes based on the support operator method for fluids dynamics problems in a collector containing gas hydrates
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2015
\vol 55
\issue 8
\pages 1341--1355
\mathnet{http://mi.mathnet.ru/zvmmf10249}
\crossref{https://doi.org/10.7868/S0044466915080116}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3386162}
\elib{https://elibrary.ru/item.asp?id=23908472}
\transl
\jour Comput. Math. Math. Phys.
\yr 2015
\vol 55
\issue 8
\pages 1310--1323
\crossref{https://doi.org/10.1134/S0965542515080114}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000360069100007}
\elib{https://elibrary.ru/item.asp?id=24942472}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84940200618}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10249
  • https://www.mathnet.ru/eng/zvmmf/v55/i8/p1341
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:347
    Full-text PDF :101
    References:70
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024