Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2015, Volume 55, Number 8, Pages 1305–1319
DOI: https://doi.org/10.7868/S0044466915080177
(Mi zvmmf10246)
 

This article is cited in 15 scientific papers (total in 15 papers)

On the solution of evolution equations based on multigrid and explicit iterative methods

V. T. Zhukov, N. D. Novikova, O. B. Feodoritova

Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Miusskaya pl. 4, Moscow, 125047, Russia
References:
Abstract: Two schemes for solving initial–boundary value problems for three-dimensional parabolic equations are studied. One is implicit and is solved using the multigrid method, while the other is explicit iterative and is based on optimal properties of the Chebyshev polynomials. In the explicit iterative scheme, the number of iteration steps and the iteration parameters are chosen as based on the approximation and stability conditions, rather than on the optimization of iteration convergence to the solution of the implicit scheme. The features of the multigrid scheme include the implementation of the intergrid transfer operators for the case of discontinuous coefficients in the equation and the adaptation of the smoothing procedure to the spectrum of the difference operators. The results produced by these schemes as applied to model problems with anisotropic discontinuous coefficients are compared.
Key words: three-dimensional parabolic equations, anisotropic discontinuous coefficients, multigrid method, explicit iterative scheme with Chebyshev parameters.
Received: 26.02.2015
English version:
Computational Mathematics and Mathematical Physics, 2015, Volume 55, Issue 8, Pages 1276–1289
DOI: https://doi.org/10.1134/S0965542515080151
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: V. T. Zhukov, N. D. Novikova, O. B. Feodoritova, “On the solution of evolution equations based on multigrid and explicit iterative methods”, Zh. Vychisl. Mat. Mat. Fiz., 55:8 (2015), 1305–1319; Comput. Math. Math. Phys., 55:8 (2015), 1276–1289
Citation in format AMSBIB
\Bibitem{ZhuNovFeo15}
\by V.~T.~Zhukov, N.~D.~Novikova, O.~B.~Feodoritova
\paper On the solution of evolution equations based on multigrid and explicit iterative methods
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2015
\vol 55
\issue 8
\pages 1305--1319
\mathnet{http://mi.mathnet.ru/zvmmf10246}
\crossref{https://doi.org/10.7868/S0044466915080177}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3386159}
\elib{https://elibrary.ru/item.asp?id=23908469}
\transl
\jour Comput. Math. Math. Phys.
\yr 2015
\vol 55
\issue 8
\pages 1276--1289
\crossref{https://doi.org/10.1134/S0965542515080151}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000360069100004}
\elib{https://elibrary.ru/item.asp?id=24942225}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84940173291}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10246
  • https://www.mathnet.ru/eng/zvmmf/v55/i8/p1305
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:416
    Full-text PDF :78
    References:93
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024