Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2015, Volume 55, Number 7, Pages 1109–1117
DOI: https://doi.org/10.7868/S0044466915070029
(Mi zvmmf10230)
 

This article is cited in 14 scientific papers (total in 14 papers)

Sharp estimates for the rate of convergence of double Fourier series in classical orthogonal polynomials

V. A. Abilova, M. V. Abilovb, M. K. Kerimovc

a Dagestan State University, ul. M. Gadzhieva 43a, Makhachkala, 367025, Russia
b Dagestan State Technical University, pr. Shamilya 70, Makhachkala, 367015, Russia
c Dorodnicyn Computing Center, Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, ul. Vavilova 40, Moscow, 119333, Russia
References:
Abstract: Sharp estimates are obtained for the convergence rate of “triangular” and “hyperbolic” partial sums of Fourier series in orthogonal (Laguerre, Hermite, Jacobi) polynomials in the classes of differentiable functions of two variables characterized by a generalized modulus of continuity. The proofs are based on the generalized shift operator and generalized modulus of continuity for functions from $\mathbb{L}_2$ having generalized partial derivatives in Levi’s sense.
Key words: double Fourier series in orthogonal polynomials, “triangular” and “hyperbolic” partial sums, sharp estimates for the convergence rate of Fourier series, functions having generalized partial derivatives, generalized modulus of continuity, generalized shift operator.
Received: 25.02.2015
English version:
Computational Mathematics and Mathematical Physics, 2015, Volume 55, Issue 7, Pages 1094–1102
DOI: https://doi.org/10.1134/S0965542515070027
Bibliographic databases:
Document Type: Article
UDC: 519.651
Language: Russian
Citation: V. A. Abilov, M. V. Abilov, M. K. Kerimov, “Sharp estimates for the rate of convergence of double Fourier series in classical orthogonal polynomials”, Zh. Vychisl. Mat. Mat. Fiz., 55:7 (2015), 1109–1117; Comput. Math. Math. Phys., 55:7 (2015), 1094–1102
Citation in format AMSBIB
\Bibitem{AbiAbiKer15}
\by V.~A.~Abilov, M.~V.~Abilov, M.~K.~Kerimov
\paper Sharp estimates for the rate of convergence of double Fourier series in classical orthogonal polynomials
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2015
\vol 55
\issue 7
\pages 1109--1117
\mathnet{http://mi.mathnet.ru/zvmmf10230}
\crossref{https://doi.org/10.7868/S0044466915070029}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3372632}
\elib{https://elibrary.ru/item.asp?id=23661495}
\transl
\jour Comput. Math. Math. Phys.
\yr 2015
\vol 55
\issue 7
\pages 1094--1102
\crossref{https://doi.org/10.1134/S0965542515070027}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000358644300002}
\elib{https://elibrary.ru/item.asp?id=23993487}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84938063389}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10230
  • https://www.mathnet.ru/eng/zvmmf/v55/i7/p1109
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Æóðíàë âû÷èñëèòåëüíîé ìàòåìàòèêè è ìàòåìàòè÷åñêîé ôèçèêè Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:468
    Full-text PDF :121
    References:86
    First page:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024