|
Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2008, Volume 48, Number 10, Pages 1878–1887
(Mi zvmmf102)
|
|
|
|
This article is cited in 29 scientific papers (total in 29 papers)
Locally one-dimensional difference schemes for the fractional order diffusion equation
M. M. Lafishevaa, M. H. Shhanukov-Lafishevb a Institute of Information Science and Problems of Regional Management, Kabardino-Balkar Scientific Center, Russian Academy of Sciences, ul. I. Armand 37a, Nalchik, 360000, Russia
b Kabardino-Balkar State University, ul. Chernyshevskogo 173, Nalchik, 360004, Russia
Abstract:
Locally-one-dimensional difference schemes for the fractional diffusion equation in multidimensional domains are considered. Stability and convergence of locally one-dimensional schemes for this equation are proved.
Key words:
differential diffusion equation, fractional derivative, stability and convergence of difference schemes, slow diffusion equation, locally one-dimensional difference scheme.
Received: 20.07.2007
Citation:
M. M. Lafisheva, M. H. Shhanukov-Lafishev, “Locally one-dimensional difference schemes for the fractional order diffusion equation”, Zh. Vychisl. Mat. Mat. Fiz., 48:10 (2008), 1878–1887; Comput. Math. Math. Phys., 48:10 (2008), 1875–1884
Linking options:
https://www.mathnet.ru/eng/zvmmf102 https://www.mathnet.ru/eng/zvmmf/v48/i10/p1878
|
Statistics & downloads: |
Abstract page: | 1285 | Full-text PDF : | 340 | References: | 75 | First page: | 6 |
|