Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2015, Volume 55, Number 4, Pages 730–736
DOI: https://doi.org/10.7868/S0044466915040122
(Mi zvmmf10197)
 

This article is cited in 1 scientific paper (total in 1 paper)

On the multiplicative complexity of some Boolean functions

S. N. Selezneva

Moscow State University, Moscow, 119992, Russia
Full-text PDF (205 kB) Citations (1)
References:
Abstract: In this paper, we study the multiplicative complexity of Boolean functions. The multiplicative complexity of a Boolean function $f$ is the smallest number of $\&$-gates in circuits in the basis $\{x\& y, x\oplus y, 1\}$ such that each such circuit computes the function $f$. We consider Boolean functions which are represented in the form $x_1, x_2\dots x_n\oplus q(x_1,\dots,x_n)$, where the degree of the function $q(x_1,\dots,x_n)$ is $2$. We prove that the multiplicative complexity of each such function is equal to $(n-1)$. We also prove that the multiplicative complexity of Boolean functions which are represented in the form $x_1\dots x_n\oplus r(x_1,\dots,x_n)$, where $r(x_1,\dots,x_n)$ is a multi-affine function, is, in some cases, equal to $(n-1)$.
Key words: Boolean function, circuit, complexity, multiplicative complexity, upper bound.
Received: 05.03.2014
English version:
Computational Mathematics and Mathematical Physics, 2015, Volume 55, Issue 4, Pages 724–730
DOI: https://doi.org/10.1134/S0965542515040119
Bibliographic databases:
Document Type: Article
UDC: 519.7
MSC: Primary 68Q19; Secondary 06E30, 94D05
Language: Russian
Citation: S. N. Selezneva, “On the multiplicative complexity of some Boolean functions”, Zh. Vychisl. Mat. Mat. Fiz., 55:4 (2015), 730–736; Comput. Math. Math. Phys., 55:4 (2015), 724–730
Citation in format AMSBIB
\Bibitem{Sel15}
\by S.~N.~Selezneva
\paper On the multiplicative complexity of some Boolean functions
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2015
\vol 55
\issue 4
\pages 730--736
\mathnet{http://mi.mathnet.ru/zvmmf10197}
\crossref{https://doi.org/10.7868/S0044466915040122}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3343132}
\zmath{https://zbmath.org/?q=an:06458245}
\elib{https://elibrary.ru/item.asp?id=23299898}
\transl
\jour Comput. Math. Math. Phys.
\yr 2015
\vol 55
\issue 4
\pages 724--730
\crossref{https://doi.org/10.1134/S0965542515040119}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000354067600017}
\elib{https://elibrary.ru/item.asp?id=24028030}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928905755}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10197
  • https://www.mathnet.ru/eng/zvmmf/v55/i4/p730
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:179
    Full-text PDF :33
    References:54
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024