Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2015, Volume 55, Number 4, Pages 550–554
DOI: https://doi.org/10.7868/S0044466915040171
(Mi zvmmf10181)
 

This article is cited in 4 scientific papers (total in 4 papers)

A bilinear algorithm of length $22$ for approximate multiplication of $2\times 7$ and $7\times 2$ matrices

A. V. Smirnov

Department of Justice, Russian Federal Center of Forensic Examination, Khokhlovskii pereul. 13-2, Moscow, 109028, Russia
Full-text PDF (173 kB) Citations (4)
References:
Abstract: A bilinear algorithm of bilinear complexity 22 for approximate multiplication of $2\times 7$ and $7\times 2$ matrices is presented. An upper bound is given for the bilinear complexity of approximate multiplication of $2\times 2$ and $2\times n$ matrices ($n\geqslant1$).
Key words: matrix multiplication, fast algorithm for multiplying matrices, bilinear algorithm, approximate bilinear algorithm, bilinear complexity, length of algorithm.
Received: 16.06.2014
Revised: 26.08.2014
English version:
Computational Mathematics and Mathematical Physics, 2015, Volume 55, Issue 4, Pages 541–545
DOI: https://doi.org/10.1134/S0965542515040168
Bibliographic databases:
Document Type: Article
UDC: 519.612
MSC: Primary 68Q25; Secondary 65F99
Language: Russian
Citation: A. V. Smirnov, “A bilinear algorithm of length $22$ for approximate multiplication of $2\times 7$ and $7\times 2$ matrices”, Zh. Vychisl. Mat. Mat. Fiz., 55:4 (2015), 550–554; Comput. Math. Math. Phys., 55:4 (2015), 541–545
Citation in format AMSBIB
\Bibitem{Smi15}
\by A.~V.~Smirnov
\paper A bilinear algorithm of length~$22$ for approximate multiplication of $2\times 7$ and $7\times 2$ matrices
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2015
\vol 55
\issue 4
\pages 550--554
\mathnet{http://mi.mathnet.ru/zvmmf10181}
\crossref{https://doi.org/10.7868/S0044466915040171}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3343116}
\zmath{https://zbmath.org/?q=an:06458229}
\elib{https://elibrary.ru/item.asp?id=23299882}
\transl
\jour Comput. Math. Math. Phys.
\yr 2015
\vol 55
\issue 4
\pages 541--545
\crossref{https://doi.org/10.1134/S0965542515040168}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000354067600001}
\elib{https://elibrary.ru/item.asp?id=24027862}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928891790}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10181
  • https://www.mathnet.ru/eng/zvmmf/v55/i4/p550
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025